Advertisement

Validation of a surface-based deformable MRI-3D ultrasound image registration algorithm toward clinical implementation for interstitial prostate brachytherapy

Published:January 12, 2023DOI:https://doi.org/10.1016/j.brachy.2022.11.011

      Abstract

      PURPOSE

      The purpose of this study was to evaluate and clinically implement a deformable surface-based magnetic resonance imaging (MRI) to three-dimensional ultrasound (US) image registration algorithm for prostate brachytherapy (BT) with the aim to reduce operator dependence and facilitate dose escalation to an MRI-defined target.

      METHODS AND MATERIALS

      Our surface-based deformable image registration (DIR) algorithm first translates and scales to align the US- and MR-defined prostate surfaces, followed by deformation of the MR-defined prostate surface to match the US-defined prostate surface. The algorithm performance was assessed in a phantom using three deformation levels, followed by validation in three retrospective high-dose-rate BT clinical cases. For comparison, manual rigid registration and cognitive fusion by physician were also employed. Registration accuracy was assessed using the Dice similarity coefficient (DSC) and target registration error (TRE) for embedded spherical landmarks. The algorithm was then implemented intraoperatively in a prospective clinical case.

      RESULTS

      In the phantom, our DIR algorithm demonstrated a mean DSC and TRE of 0.74 ± 0.08 and 0.94 ± 0.49 mm, respectively, significantly improving the performance compared to manual rigid registration with 0.64 ± 0.16 and 1.88 ± 1.24 mm, respectively. Clinical results demonstrated reduced variability compared to the current standard of cognitive fusion by physicians.

      CONCLUSIONS

      We successfully validated a DIR algorithm allowing for translation of MR-defined target and organ-at-risk contours into the intraoperative environment. Prospective clinical implementation demonstrated the intraoperative feasibility of our algorithm, facilitating targeted biopsies and dose escalation to the MR-defined lesion. This method provides the potential to standardize the registration procedure between physicians, reducing operator dependence.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brachytherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoskin P
        • Rojas A
        • Ostler P
        • et al.
        High-dose-rate brachytherapy alone given as two or one fraction to patients for locally advanced prostate cancer: acute toxicity.
        Radiother Oncol. 2014; 110: 268-271https://doi.org/10.1016/j.radonc.2013.09.025
        • Pucar D
        • Hricak H
        • Shukla-Dave A
        • et al.
        Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence.
        Int J Radiat Oncol Biol Phys. 2007; 69: 62-69https://doi.org/10.1016/j.ijrobp.2007.03.065
        • Arrayeh E
        • Westphalen AC
        • Kurhanewicz J
        • et al.
        Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study.
        Int J Radiat Oncol Biol Phys. 2012; 82: e787-e793https://doi.org/10.1016/j.ijrobp.2011.11.030
        • Cellini N
        • Morganti AG
        • Mattiucci GC
        • et al.
        Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning.
        Int J Radiat Oncol Biol Phys. 2002; 53: 595-599https://doi.org/10.1016/S0360-3016(02)02795-5
        • Bauman G
        • Haider M
        • Van der Heide UA
        • Ménard C.
        Boosting imaging defined dominant prostatic tumors: a systematic review.
        Radiother Oncol. 2013; 107: 274-281https://doi.org/10.1016/J.RADONC.2013.04.027
        • Von Eyben FE
        • Kiljunen T
        • Kangasmaki A
        • et al.
        Radiotherapy boost for the dominant intraprostatic cancer lesion - a systematic review and meta-analysis.
        Clin Genitourin Cancer. 2016; 14: 189-197https://doi.org/10.1016/j.clgc.2015.12.005
      1. Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. 2010;324:1156-1161. doi:10.1056/NEJM199104253241702.

        • Thompson J
        • Lawrentschuk N
        • Frydenberg M
        • et al.
        The role of magnetic resonance imaging in the diagnosis and management of prostate cancer.
        BJU Int. 2013; 112: 6-20https://doi.org/10.1111/BJU.12381
        • Bauman G
        • Haider M
        • Van Der Heide UA
        • Ménard C.
        Boosting imaging defined dominant prostatic tumors: a systematic review.
        Radiother Oncol. 2013; 107: 274-281https://doi.org/10.1016/j.radonc.2013.04.027
        • Bouchelouche K
        • Turkbey B
        • Choyke P
        • Capala J.
        Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging.
        Curr Urol Rep. 2010; 11: 180-190https://doi.org/10.1007/S11934-010-0105-9/FIGURES/5
        • Sun Y
        • Qiu W
        • Romagnoli C
        • Fenster A.
        3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy.
        in: Proc. SPIE 9036, Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling. 2014: 90362Jhttps://doi.org/10.1117/12.2043662
        • Narayanan R
        • Kurhanewicz J
        • Shinohara K
        • et al.
        MRI-ultrasound registration for targeted prostate biopsy.
        in: Proc - 2009 IEEE Int Symp Biomed Imaging From Nano to Macro, ISBI 2009. 2009: 991-994https://doi.org/10.1109/ISBI.2009.5193221
        • Hu Y
        • Ahmed HU
        • Taylor Z
        • et al.
        MR to ultrasound registration for image-guided prostate interventions.
        Med Image Anal. 2012; 16: 687-703https://doi.org/10.1016/j.media.2010.11.003
        • Shaaer A
        • Davidson M
        • Semple M
        • et al.
        Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy.
        Brachytherapy. 2019; 18: 95-102https://doi.org/10.1016/j.brachy.2018.08.006
        • Venderink W
        • de Rooij M
        • Sedelaar J.M
        • et al.
        Elastic versus rigid image registration in magnetic resonance imaging–transrectal ultrasound fusion prostate biopsy: a systematic review and meta-analysis.
        Eur Urol Focus. 2018; 4: 219-227https://doi.org/10.1016/j.euf.2016.07.003
        • Borkowetz A
        • Platzek I
        • Toma M
        • et al.
        Comparison of systematic transrectal biopsy to transperineal magnetic resonance imaging/ultrasound-fusion biopsy for the diagnosis of prostate cancer.
        BJU Int. 2015; 116: 873-879https://doi.org/10.1111/BJU.13023
        • Siddiqui MM
        • Rais-Bahrami S
        • Turkbey B
        • et al.
        Comparison of MR/ultrasound fusion–guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer.
        JAMA. 2015; 313: 390-397https://doi.org/10.1001/JAMA.2014.17942
        • Radtke JP
        • Kuru TH
        • Boxler S
        • et al.
        Comparative analysis of transperineal template saturation prostate biopsy versus magnetic resonance imaging targeted biopsy with magnetic resonance imaging-ultrasound fusion guidance.
        J Urol. 2015; 193: 87-94https://doi.org/10.1016/J.JURO.2014.07.098
        • Hu Y
        • Ahmed HU
        • Taylor Z
        • et al.
        MR to ultrasound registration for image-guided prostate interventions.
        Med Image Anal. 2012; 16: 687-703https://doi.org/10.1016/J.MEDIA.2010.11.003
        • Baco E
        • Ukimura O
        • Rud E
        • et al.
        Magnetic resonance imaging–transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients.
        Eur Urol. 2015; 67: 787-794https://doi.org/10.1016/J.EURURO.2014.08.077
        • Meng X
        • Rosenkrantz AB
        • Mendhiratta N
        • et al.
        Relationship between prebiopsy multiparametric magnetic resonance imaging (MRI), biopsy indication, and MRI-ultrasound fusion–targeted prostate biopsy outcomes.
        Eur Urol. 2016; 69: 512-517https://doi.org/10.1016/J.EURURO.2015.06.005
        • Ukimura O
        • Marien A
        • Palmer S
        • et al.
        Trans-rectal ultrasound visibility of prostate lesions identified by magnetic resonance imaging increases accuracy of image-fusion targeted biopsies.
        World J Urol. 2015; 33: 1669-1676https://doi.org/10.1007/s00345-015-1501-z
        • Guo H
        • Kruger M
        • Xu S
        • et al.
        Deep adaptive registration of multi-modal prostate images.
        Comput Med Imaging Graph. 2020; 84101769https://doi.org/10.1016/J.COMPMEDIMAG.2020.101769
        • Zeng Q
        • Fu Y
        • Tian Z
        • et al.
        Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy.
        Phys Med Biol. 2020; 65135002https://doi.org/10.1088/1361-6560/AB8CD6
        • Chen Y
        • Xing L
        • Yu L
        • et al.
        MR to ultrasound image registration with segmentation-based learning for HDR prostate brachytherapy.
        Med Phys. 2021; 48: 3074-3083https://doi.org/10.1002/MP.14901
        • Yang X
        • Fu Y
        • Lei Y
        • et al.
        Deformable MRI-TRUS registration using biomechanically constrained deep learning model for tumor-targeted prostate brachytherapy.
        Int J Radiat Oncol Biol Phys. 2020; 108: e339https://doi.org/10.1016/J.IJROBP.2020.07.810
        • Yan P
        • Xu S
        • Rastinehad AR
        • Wood BJ.
        Adversarial image registration with application for MR and TRUS image fusion.
        Lect Notes Comput Sci. 2018; 11046: 197-204https://doi.org/10.1007/978-3-030-00919-9_23/FIGURES/3
        • Hu Y
        • Modat M
        • Gibson E
        • et al.
        Weakly-supervised convolutional neural networks for multimodal image registration.
        Med Image Anal. 2018; 49: 1-13https://doi.org/10.1016/J.MEDIA.2018.07.002
        • Schroeder W
        • Martin K
        • Lorensen B.
        The visualization toolkit.
        4th Ed. Kitware, 2006
        • Bax J
        • Smith D
        • Bartha L
        • et al.
        A compact mechatronic system for 3D ultrasound guided prostate interventions.
        Med Phys. 2011; 38: 1055-1069https://doi.org/10.1118/1.3531540
        • Fitzpatrick JM
        • West JB
        • Maurer CR.
        Predicting error in rigid-body point-based registration.
        IEEE Trans Med Imaging. 1998; 17: 694-702https://doi.org/10.1109/42.736021
        • Poulin E
        • Boudam K
        • Pinter C
        • et al.
        Validation of MRI to TRUS registration for high-dose-rate prostate brachytherapy.
        Brachytherapy. 2018; 17: 283-290https://doi.org/10.1016/j.brachy.2017.11.018
        • Grajales D
        • Kadoury S
        • Shams R
        • et al.
        Performance of an integrated multimodality image guidance and dose-planning system supporting tumor-targeted HDR brachytherapy for prostate cancer.
        Radiother Oncol. 2022; 166: 154-161https://doi.org/10.1016/j.radonc.2021.11.026
        • McGeachy P
        • Watt E
        • Husain S
        • et al.
        MRI-TRUS registration methodology for TRUS-guided HDR prostate brachytherapy.
        J Appl Clin Med Phys. 2021; 22: 284-294https://doi.org/10.1002/acm2.13292
        • Orlando N
        • Gillies DJ
        • Gyacskov I
        • et al.
        Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
        Med Phys. 2020; 47: 2413-2426https://doi.org/10.1002/mp.14134
        • Orlando N
        • Gyacskov I
        • Gillies DJ
        • et al.
        Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
        Phys Med Biol. 2022; 67074002https://doi.org/10.1088/1361-6560/AC5A93