ABSTRACT
PURPOSE
METHODS
RESULTS
CONCLUSIONS
Keywords
Introduction
- Eaton DJ
Solvay speciality polymers, “Galden HT PFPE heat transfer fluids” 2020, [Online]. Available: http://www.behlke.com/pdf/datasheets/galden_ht135.pdf (Accessed August 2019).
- Walter AE
- Hull JL
- DeWerd LA
- Walter AE
- Hull JL
- DeWerd LA
- Nath R
- Anderson LL
- Luxton G
- et al.
- Rivard MJ
- Coursey BM
- DeWerd LA
- et al.
- DeWerd LA
- Culberson WS
- Micka JA
- Simiele SJ
- DeWerd LA
- Culberson WS
- Micka JA
- Simiele SJ
where
- DeWerd LA
- Culberson WS
- Micka JA
- Simiele SJ
- Rivard MJ
- Davis SD
- DeWerd LA
- et al.
- Kry SF
- Alvarez P
- Cygler JE
- et al.
- Reed JL
- Rivard MJ
- Micka JA
- et al.
- Da Rosa LAR
- Regulla DF
- Fill UA
- Cameron JR
- Zimmerman D
- Kenney G
- et al.
- Miller JR
- Hooten BD
- Micka JA
- DeWerd LA
- Almond PR
- Biggs PJ
- Coursey BM
- et al.
- McEwen M
- DeWerd LA
- Ibbott G
- et al.
S Imaging, “ION CHAMBERS EXRADIN A26,” vol. i. [Online]. Available: https://static.standardimaging.com/literature/ExradinA26_DS_1363-21.pdf (Accessed July 2021).
S Imaging, “ION CHAMBERS EXRADIN A26,” vol. i. [Online]. Available: https://static.standardimaging.com/literature/ExradinA26_DS_1363-21.pdf (Accessed July 2021).
- Niroomand-Rad A
- Chiu-Tsao S
- Grams MP
- et al.
- Niroomand-Rad A
- Blackwell CR
- Coursey BM
- et al.
- Schneider F
- Fuchs H
- Lorenz F
- et al.
Methods and materials
TLD100 Microcube measurements
- Cameron JR
- Zimmerman D
- Kenney G
- et al.
where M is the light output of the TLD, with the applied CF and corrected for background, N is the calibration coefficient determined from the Co-60 calibration, is an energy correction factor, adopted from the work of Pike (
where accounts for the r2 fall off of the source. As per DeWerd et al. (
- DeWerd LA
- Culberson WS
- Micka JA
- Simiele SJ
- Perl J
- Shin J
- Schümann J
- et al.
- Berumen F
- Ma Y
- Ramos-Méndez J
- et al.

- Agostinelli S
- Allison J
- Amako K
- et al.
Physics parameter | Value |
---|---|
Variance reduction: uniform bremsstrahlung splitting | 10,000 |
Physics modules | G4em-standard_opt4 G4em-extra G4em-livermore G4em-standard_GS |
EmRangeMin | 50 eV |
Auger | True |
Auger Cascade | False |
Fluorescence | True |
PIXE | True |
Deexcitation Ignore Cuts | False |
Cut For Electron | 0.5 nm |
Cut For Gamma | 0.1 nm |
Set Production Cut Lower Edge | 1 keV |
Gafchromic film measurements

A26 ionization chamber measurements

- Miller JR
- Hooten BD
- Micka JA
- DeWerd LA
where M is the raw charge reading, is the air kerma rate calibration coefficient, measured in the UW M50 beam, corrects for temperature and pressure, is the polarity correction factor, corrects for ionic recombination, is the electrometer calibration factor, converts the air-kerma of the M50 beam to absorbed dose to water of the M50 beam and was previously determined at the UWMRRC, accounts for volume averaging effects of the chamber, determined using the EGSnrc user code, and is the energy dependence of the chamber to account for dependence between the M50 and Axxent source average energies (
S Imaging, “ION CHAMBERS EXRADIN A26,” vol. i. [Online]. Available: https://static.standardimaging.com/literature/ExradinA26_DS_1363-21.pdf (Accessed July 2021).
- Walter AE
- Hull JL
- DeWerd LA
Results
Radial dose distributions

Radial dose function
Radial distance (cm) | TLD100 Microcubes (%) | A26 chamber (%) | Percent difference |
---|---|---|---|
1 | 1.000 ± 0.174 (17.4%) | 1.000 ± 0.032 (8.6%) | 0.0% |
2 | 0.682 ± 0.124 (18.3%) | 0.645 ± 0.021 (8.6%) | 5.7% |
3 | 0.508 ± 0.100 (19.6%) | 0.475 ± 0.016 (8.7%) | 6.9% |
4 | 0.309 ± 0.167 (54.2%) | 0.361 ± 0.015 (9.1%) | -14% |
Dose rate conversion coefficient
- Walter AE
- Hull JL
- DeWerd LA
Quantity | Type A (%) | Type B (%) |
---|---|---|
TLD reproducibility | 1.6 | |
TLD irradiation time | 0.33 | |
TLD reader stability | 0.10 | |
Measured azimuthal anisotropy | 7.0 | |
Source positioning | 4.5 | |
Calibration | 1.35 | |
Phantom correction factor | 0.07 | 0.00 |
Intrinsic energy dependence | 0.99 | 0.97 |
Combined uncertainty | 7.25 | 4.81 |
Standard total uncertainty (k = 1) | 8.70 | |
Expanded uncertainty (k = 2) | 17.4 |
- Walter AE
- Hull JL
- DeWerd LA
Quantity | Type A (%) | Type B (%) |
---|---|---|
Chamber measurements | 0.20 | |
Electrometer calibration | 0.17 | |
Air density | 0.10 | |
Azimuthal anisotropy | 4.04 | |
Ion recombination | 0.05 | |
Polarity | 0.05 | |
Dw to K conversion | 0.50 | |
Volume correction | 0.50 | |
Energy correction | 0.50 | |
Calibration uncertainty | 0.50 | |
Combined uncertainty | 0.05 | 1.02 |
Standard total uncertainty (k = 1) | 4.31 | |
Expanded uncertainty (k = 2) | 8.62 |
- Miller JR
- Hooten BD
- Micka JA
- DeWerd LA
Polar anisotropy

Quantity | Type A (%) | Type B (%) |
---|---|---|
TLD reproducibility | 3.00 | |
TLD irradiation time | 0.33 | |
TLD reader stability | 0.10 | |
Source positioning | 0.30 | |
Calibration | 1.35 | |
Phantom correction factor | 2.00 | 0.90 |
Intrinsic energy dependence | 0.99 | 0.96 |
Combined uncertainty | 3.16 | 2.64 |
Standard total uncertainty (k = 1) | 4.22 | |
Expanded uncertainty (k = 2) | 8.44 |
Discussion
- Walter AE
- Hull JL
- DeWerd LA
Conclusion
Acknowledgments
Appendix B. Supplementary materials
References
Xoft, “Operator manual axxent controller model 110 rev. X.” 2013.
- Electronic brachytherapy-current status and future directions.Br J Radiol. 2015; 88https://doi.org/10.1259/bjr.20150002
Solvay speciality polymers, “Galden HT PFPE heat transfer fluids” 2020, [Online]. Available: http://www.behlke.com/pdf/datasheets/galden_ht135.pdf (Accessed August 2019).
- Comparison of air kerma rate between the S7500 and S7600 Xoft Axxent sources.Brachytherapy. 2021; https://doi.org/10.11016/j.brachy.2021.12.005
- Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM radiation therapy committee task group no. 43.Med Phys. 1995; 22https://doi.org/10.1118/1.597458
- Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations.Med Phys. 2004; 31https://doi.org/10.1118/1.1646040
- A modified dose calculation formalism for electronic brachytherapy sources.Brachytherapy. 2015; 14https://doi.org/10.1016/j.brachy.2015.01.003
- Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source.Med Phys. 2006; 33https://doi.org/10.1118/1.2357021
J Raffi, Limitations of current dosimetry for intracavitary partial breast irradiation with high dose rate 192Ir and electornic brachytherapy sources, University of Wisconsin-Madison, 2016.
SJ Simiele, Advancements in electronic brachytherapy dosimetry methods, University of Wisconsin-Madison, 2017.
TL Pike, A dosimetric characterization of an electronic brachytherapy source in terms of absorbed dose to water, University of Wisconsin- Madison, 2012.
- AAPM TG 191: clinical use of luminescent dosimeters: TLDs and OSLDs.Med. Phys. 2020; 47https://doi.org/10.1002/mp.13839
- Experimental and Monte Carlo dosimetric characterization of a 1cm 103Pd brachytherapy source.Brachytherapy. 2014; 13https://doi.org/10.1016/j.brachy.2014.04.001
- Reproducibility study of TLD-100 micro-cubes at radiotherapy dose level.Appl Radiat Isot. 1999; 50https://doi.org/10.1016/S0969-8043(98)00068-2
- Thermoluminescent radiation dosimetry utilizing LiF.Health Phys. 1964; 10https://doi.org/10.1097/00004032-196401000-00003
- Polarity effects and apparent ion recombination in microionization chambers.Med Phys. 2016; 43https://doi.org/10.1118/1.4944872
- AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams.Med. Phys. 1999; 26https://doi.org/10.1118/1.598691
- Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams.Med Phys. 2014; 41https://doi.org/10.1118/1.4866223
S Imaging, “ION CHAMBERS EXRADIN A26,” vol. i. [Online]. Available: https://static.standardimaging.com/literature/ExradinA26_DS_1363-21.pdf (Accessed July 2021).
- Report of AAPM task group 235 Radiochromic film dosimetry: an update to TG-55.Med Phys. 2020; 47https://doi.org/10.1002/mp.14497
- Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55.Med Phys. 1998; 25https://doi.org/10.1118/1.598407
- A novel device for intravaginal electronic brachytherapy.Int J Radiat Oncol Biol Phys. 2009; 74https://doi.org/10.1016/j.ijrobp.2009.01.082
- TOPAS: An innovative proton Monte Carlo platform for research and clinical applications.Med Phys. 2012; 39https://doi.org/10.1118/1.4758060
- Validation of the TOPAS Monte Carlo toolkit for HDR brachytherapy simulations.Brachytherapy. 2021; 20https://doi.org/10.1016/j.brachy.2020.12.007
- GEANT4 - A simulation toolkit.Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2003; 506https://doi.org/10.1016/S0168-9002(03)01368-8
MJ Lawless, Development of kilovoltage x-ray dosimetry methods for their applications to cone beam computed tomography, University of Wisconsin Madison, 2016.
Article info
Publication history
Publication stage
In Press Corrected ProofFootnotes
Disclosures: This work was funded in part by Xoft, a subsidiary of iCAD, Inc. via contract number MSN262697. The sources and test fixture used were provided by Xoft. Larry DeWerd has a partial interested in Standard Imaging, the manufacturer of the chambers used in this work.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy