Advertisement

A versatile physical phantom design and construction for I-125 dose measurements and dose-to-medium determination

Published:November 14, 2022DOI:https://doi.org/10.1016/j.brachy.2022.10.005

      ABSTRACT

      PURPOSE

      In this paper we present a phantom designed to provide conditions to generate set of “true” independent reference data as requested by TG-186, and mitigating the scarcity of experimental studies on brachytherapy validation. It was used to perform accurate experimental measurements of dose of 125I brachytherapy seeds using LiF dosimeters, with the objective of experimentally validating Monte Carlo (MC) calculations with model-based dose calculation algorithm (MBDCA). In addition, this work intends to evaluate a methodology to convert the experimental values from LiF into dose in the medium.

      METHODS AND MATERIALS

      The proposed PMMA physical phantom features cavities to insert a LiF dosimeter and a 125I seed, adjusted in different configurations with variable thickness. Monte Carlo calculations performed with MCNP6.2 code were used to score the absorbed dose in the LiF and the dose conversion parameters. A sensitivity analysis was done to verify the source of possible uncertainties and quantify their impact on the results.

      RESULTS

      The proposed phantom and experimental procedure developed in this work provided precise dose data within 5.68% uncertainty (k = 1). The achieved precision made it possible to convert the LiF responses into absorbed dose to medium and to validate the dose conversion factor methodology.

      CONCLUSIONS

      The proposed phantom is simple both in design and as in its composition, thus achieving the demanded precision in dose evaluations due to its easy reproducibility of experimental setup. The results derived from the phantom measurements support the dose conversion methodology. The phantom and the experimental procedure developed here can be applied for other materials and radiation sources.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brachytherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mckeever S.W.S.
        Thermoluminescence of Solids.
        Cabridge University Press, 2011https://doi.org/10.1017/CBO9780511564994
        • Duragkar A
        • Muley A
        • Pawar NR
        • Chopra V
        • et al.
        Versatility of thermoluminescence materials and radiation dosimetry - a review.
        Luminescence. 2019; 34: 656-665https://doi.org/10.1002/bio.3644
        • Nath R
        • Anderson LL
        • Luxton G
        • Weaver KA
        • et al.
        Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43.
        Med Phys. 1995; 22: 209-234https://doi.org/10.1118/1.597458
        • Rivard MJ
        • Coursey BM
        • DeWerd LA
        • Hanson WF
        • et al.
        Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations.
        Med Phys. 2004; 31: 633-674https://doi.org/10.1118/1.1646040
        • Rivard MJ
        • Butler WM
        • DeWerd LA
        • Huq MS
        • et al.
        Supplement to the 2004 update of the AAPM Task Group No. 43 Report.
        Med Phys. 2007; 34: 2187-2205https://doi.org/10.1118/1.2736790
        • Rivard MJ
        • Ballester F
        • Butler WM
        • DeWerd LA
        • et al.
        Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: joint recommendations by the AAPM and GEC-ESTRO.
        Med Phys. 2017; 44: 297-338https://doi.org/10.1002/mp.12430
        • Davis SD
        • Ross CK
        • Mobit PN
        • Van der Zwan L
        • et al.
        The response of lif thermoluminescence dosemeters to photon beams in the energy range from 30 kV x rays to 60Co gamma rays.
        Radiat Prot Dosimetry. 2003; 106: 33-43https://doi.org/10.1093/oxfordjournals.rpd.a006332
        • Rogers DWO.
        General characteristics of radiation dosimeters and a terminology to describe them.
        Clinical dosimetry measurements in radiotherapy. Medical Physics Publishing, Madison, WI2009: 137-145
        • Rodriguez M
        • Rogers DWO.
        Effect of improved TLD dosimetry on the determination of dose rate constants for 125I and 103Pd brachytherapy seeds.
        Med Phys. 2014; 41 (15)114301https://doi.org/10.1118/1.4895003
        • Reed JL
        • Rasmussen BE
        • Davis SD
        • Micka JA
        • et al.
        Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy source relative to 60Co.
        Med Phys. 2014; 41122103https://doi.org/10.1118/1.4901300
        • Nunn AA
        • Davis SD
        • Micka JA
        • DeWerd LA
        • et al.
        LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to 60Co.
        Med Phys. 2008; 35: 1859-1869https://doi.org/10.1118/1.2898137
        • Tedgren AC
        • Hedman A
        • Grindborg JE
        • Carlsson GA
        • et al.
        Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
        Med Phys. 2011; 38: 5539-5550https://doi.org/10.1118/1.3633892
        • Tedgren AC
        • Elia R
        • Hedtjarn H
        • Olsson S
        • Alm Carlsson G
        • et al.
        Determination of absorbed dose to water around a clinical HDR 192Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.
        Med Phys. 2012; 39: 1133-1140https://doi.org/10.1118/1.3675401
        • Perez-Calatayud J
        • Ballester F
        • Das RK
        • Dewerd LA
        • et al.
        Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO.
        Med Phys. 2012; 39: 2904-2929https://doi.org/10.1118/1.3703892
        • Gambarini G
        • Borroni M
        • Grisotto S
        • Maucione A
        • et al.
        Solid state TL detectors for in vivo dosimetry in brachytherapy.
        Appl Radiat Isot. 2012; 71: 48-51https://doi.org/10.1016/j.apradiso.2012.06.018
        • Moutsatsos A
        • Pantelis E
        • Papagiannis P
        • Baltas D.
        Experimental determination of the Task Group-43 dosimetric parameters of the new I25.S17 plus 125I brachytherapy source.
        Brachytherapy. 2014; 13: 618-626https://doi.org/10.1016/j.brachy.2014.07.001
        • Majdaeen M
        • Refahi S
        • Banaei A
        • Ghadimi M
        • et al.
        A comparison of skin dose estimation between thermoluminescent dosimeter and treatment planning system in prostatic cancer: a brachytherapy technique.
        J Clin Transl Res. 2021; 7: 77-83https://doi.org/10.18053/jctres.07.202101.006
        • Raffi JA
        • Davis SD
        • Hammer CG
        • Micka JA
        • et al.
        Determination of exit skin dose for 192Ir intracavitary accelerated partial breast irradiation with thermoluminescent dosimeters.
        Med Phys. 2010; 37: 2693-2702https://doi.org/10.1118/1.3429089
        • Adlienė D
        • Jakštas K
        • Urbonavičius BG.
        In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.
        Radiat Prot. Dosimetry. 2015; 165: 477-481https://doi.org/10.1093/rpd/ncv054
        • Rivard MJ
        • Beaulieu L
        • Mourtada F.
        Enhancements to commissioning techniques and quality assurance of brachytherapy treatment planning systems that use model-based dose calculation algorithms.
        Med Phys. 2010; 37: 2645-2658https://doi.org/10.1118/1.3429131
        • Beaulieu L
        • Carlsson Tedgren A
        • Carrier JF
        • Davis SD
        • et al.
        Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation.
        Med Phys. 2012; 39: 6208-6236https://doi.org/10.1118/1.4747264
        • Carlsson Tedgren A
        • Ahnesjö A.
        Optimization of the computational efficiency of a 3D, collapsed cone dose calculation algorithm for brachytherapy.
        Med Phys. 2008; 35: 1611-1618https://doi.org/10.1118/1.2889777
      1. Van Veelen B, Ma Y, Beaulieu L. ACE advanced collapsed cone engine ELEKTA 2014. White paper available at Available at: www.elekta.com, Accessed June 29, 2022.

        • Petrokokkinos L
        • Petrokokkinos L
        • Zourari K
        • Pantelis E
        • Moutsatsos A
        • et al.
        Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator.
        Med Phys. 2011; 38: 1981-1992https://doi.org/10.1118/1.3567507
        • Lloyd SAM
        • Ansbacher W.
        Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities.
        Med Phys. 2013; 40 (-5)011707https://doi.org/10.1118/1.4769419
        • Branco ISL
        • Antunes PCG
        • Fonseca GP
        • Yoriyaz H.
        Monte Carlo studies on water and LiF cavity properties for dose-reporting quantities when using x-ray and brachytherapy sources.
        Phys Med Biol. 2016; 61: 8890-8907https://doi.org/10.1088/1361-6560/61/24/8890
        • Andreo P.
        Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.
        Phys Med Biol. 2015; 60: 309-337https://doi.org/10.1088/0031-9155/60/1/309
        • Andreo P.
        Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.
        Phys Med Biol. 2015; 60 (corrigendum): 2619
        • Ballester F
        • Carlsson Tedgren Å
        • Granero D
        • Haworth A
        • et al.
        A generic high-dose rate 192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism.
        Med Phys. 2015; 42: 3048-3062https://doi.org/10.1118/1.4921020
        • Giménez-Alventosa V
        • Antunes PC
        • Vijande J
        • Ballester F
        • et al.
        Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.
        Phys Med Biol. 2017; 62: 146-164https://doi.org/10.1088/1361-6560/aa4f6a
        • Moura ES
        • Micka JA
        • Hammer CG
        • Culberson WS
        • et al.
        Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms.
        Med Phys. 2015; 42: 1566-1574https://doi.org/10.1118/1.4914390
        • Pappas EP
        • Zoros E
        • Moutsatsos A
        • Peppa V
        • et al.
        On the experimental validation of model-based dose calculation algorithms for 192Ir HDR brachytherapy treatment planning.
        Phys Med Biol. 2017; 62: 4160-4182https://doi.org/10.1088/1361-6560/aa6a01
        • Taylor REP
        • Yegin G
        • Rogers DW O
        Benchmarking BrachyDose: Voxel based EGSnrc Monte Carlo calculations of TG-43 dosimetry parameters.
        Med Phys. 2017; 34: 445-457https://doi.org/10.1118/1.2400843
      2. Werner CJ, Bull JS, Solomon CJJ, Brown FB. et al. MCNP6.2 Release Notes, Los Alamos National Laboratory, report LA-UR-18-20808, 2018.

        • Fonseca GP
        • Reniers B
        • Landry G
        • White S
        • et al.
        A medical image-based graphical platform - Features, applications and relevance for brachytherapy.
        Brachytherapy. 2014; 13: 632-639https://doi.org/10.1016/j.brachy.2014.07.004
        • Morato S
        • Juste B
        • Peris S
        • Miro R
        • et al.
        Brachytherapy organ dose estimation using Monte Carlo simulations of realistic patient models.
        Annu Int Conf IEEE Eng Med Biol Soc. 2018; 7: 6149-6152https://doi.org/10.1109/EMBC.2018.8513678
        • Dolan J
        • Li Z
        • Williamson JF
        Monte Carlo and experimental dosimetry of an 125I brachytherapy seed.
        Med Phys. 2006; 33: 4675-4684https://doi.org/10.1118/1.2388158
        • Safigholi H
        • Chamberland MJP
        • Taylor REP
        • Allen CH
        • et al.
        Update of the CLRP TG-43 parameter database for low-energy brachytherapy sources.
        Med Phys. 2020; 47: 4656-4669https://doi.org/10.1002/mp.14249
        • Baglin CM
        Nuclear data sheets for A = 192 Nucl.
        Data Sheets. 2012; 113: 1871-2111
        • Taylor REP
        • Rogers DWO.
        An EGSnrc Monte Carlo-calculated database of TG-43 parameters.
        Med Phys. 2008; 35: 4228-4241https://doi.org/10.1118/1.2965360
        • Sheikh-Bagheri D
        • Rogers DWO.
        Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code.
        Med Phys. 2002; 29: 391-402https://doi.org/10.1118/1.1445413
        • Landry G
        • Reniers B
        • Pignol JP
        • Beaulieu L
        • Verhaegen F
        • et al.
        The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.
        Med Phys. 2011; 38: 1526-1533https://doi.org/10.1118/1.3549760
        • Tedgren AC
        • Carlsson GA
        Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy.
        Phys Med Biol. 2013; 58: 2561-2579https://doi.org/10.1088/0031-9155/58/8/2561
      3. Berger MJ 1994 ESTAR, PSTAR, ASTAR A PC packagea for calculating stopping powers and ranges of electrons, protons and helium ions Report IAEA-NDS-144

        • Davis SD
        • Micka JA
        • DeWerd LA
        • Rasmussen B
        • et al.
        SU-GG-T-292: The response of LiF:Mg,Ti thermoluminescent dosimeters to low-energy photons.
        Med Phys. 2008; 35: 2792https://doi.org/10.1118/1.2962044
        • Kennedy RM
        • Davis SD
        • Micka JA
        • DeWerd LA
        • et al.
        Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeedTM brachytherapy source.
        Med Phys. 2010; 37: 1681-1688https://doi.org/10.1118/1.3360899
        • DeWerd LA
        • Lbbott GS
        • Meigooni AS
        • Mitch MG
        • et al.
        A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM task group No. 138 and GEC-ESTRO.
        Med Phys. 2011; 38: 782-801https://doi.org/10.1118/1.3533720
        • Liu D
        • Poon E
        • Bazalova M
        • Reniers B
        • et al.
        Spectroscopic characterization of a novel electronic brachytherapy system.
        Phys Med Biol. 2008; 53: 61-75https://doi.org/10.1088/0031-9155/53/1/004
        • Andreo P
        • Burns DT
        • Salvat F.
        On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry.
        Phys Med Biol. 2012; 57: 2117-2136https://doi.org/10.1088/0031-9155/57/8/2117