ABSTRACT
PURPOSE
METHODS AND MATERIALS
RESULTS
CONCLUSIONS
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to BrachytherapyReferences
- Thermoluminescence of Solids.Cabridge University Press, 2011https://doi.org/10.1017/CBO9780511564994
- Versatility of thermoluminescence materials and radiation dosimetry - a review.Luminescence. 2019; 34: 656-665https://doi.org/10.1002/bio.3644
- Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43.Med Phys. 1995; 22: 209-234https://doi.org/10.1118/1.597458
- Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations.Med Phys. 2004; 31: 633-674https://doi.org/10.1118/1.1646040
- Supplement to the 2004 update of the AAPM Task Group No. 43 Report.Med Phys. 2007; 34: 2187-2205https://doi.org/10.1118/1.2736790
- Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: joint recommendations by the AAPM and GEC-ESTRO.Med Phys. 2017; 44: 297-338https://doi.org/10.1002/mp.12430
- The response of lif thermoluminescence dosemeters to photon beams in the energy range from 30 kV x rays to 60Co gamma rays.Radiat Prot Dosimetry. 2003; 106: 33-43https://doi.org/10.1093/oxfordjournals.rpd.a006332
- General characteristics of radiation dosimeters and a terminology to describe them.Clinical dosimetry measurements in radiotherapy. Medical Physics Publishing, Madison, WI2009: 137-145
- Effect of improved TLD dosimetry on the determination of dose rate constants for 125I and 103Pd brachytherapy seeds.Med Phys. 2014; 41 (15)114301https://doi.org/10.1118/1.4895003
- Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy source relative to 60Co.Med Phys. 2014; 41122103https://doi.org/10.1118/1.4901300
- LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to 60Co.Med Phys. 2008; 35: 1859-1869https://doi.org/10.1118/1.2898137
- Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).Med Phys. 2011; 38: 5539-5550https://doi.org/10.1118/1.3633892
- Determination of absorbed dose to water around a clinical HDR 192Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.Med Phys. 2012; 39: 1133-1140https://doi.org/10.1118/1.3675401
- Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO.Med Phys. 2012; 39: 2904-2929https://doi.org/10.1118/1.3703892
- Solid state TL detectors for in vivo dosimetry in brachytherapy.Appl Radiat Isot. 2012; 71: 48-51https://doi.org/10.1016/j.apradiso.2012.06.018
- Experimental determination of the Task Group-43 dosimetric parameters of the new I25.S17 plus 125I brachytherapy source.Brachytherapy. 2014; 13: 618-626https://doi.org/10.1016/j.brachy.2014.07.001
- A comparison of skin dose estimation between thermoluminescent dosimeter and treatment planning system in prostatic cancer: a brachytherapy technique.J Clin Transl Res. 2021; 7: 77-83https://doi.org/10.18053/jctres.07.202101.006
- Determination of exit skin dose for 192Ir intracavitary accelerated partial breast irradiation with thermoluminescent dosimeters.Med Phys. 2010; 37: 2693-2702https://doi.org/10.1118/1.3429089
- In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.Radiat Prot. Dosimetry. 2015; 165: 477-481https://doi.org/10.1093/rpd/ncv054
- Enhancements to commissioning techniques and quality assurance of brachytherapy treatment planning systems that use model-based dose calculation algorithms.Med Phys. 2010; 37: 2645-2658https://doi.org/10.1118/1.3429131
- Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation.Med Phys. 2012; 39: 6208-6236https://doi.org/10.1118/1.4747264
- Optimization of the computational efficiency of a 3D, collapsed cone dose calculation algorithm for brachytherapy.Med Phys. 2008; 35: 1611-1618https://doi.org/10.1118/1.2889777
Van Veelen B, Ma Y, Beaulieu L. ACE advanced collapsed cone engine ELEKTA 2014. White paper available at Available at: www.elekta.com, Accessed June 29, 2022.
- Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator.Med Phys. 2011; 38: 1981-1992https://doi.org/10.1118/1.3567507
- Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities.Med Phys. 2013; 40 (-5)011707https://doi.org/10.1118/1.4769419
- Monte Carlo studies on water and LiF cavity properties for dose-reporting quantities when using x-ray and brachytherapy sources.Phys Med Biol. 2016; 61: 8890-8907https://doi.org/10.1088/1361-6560/61/24/8890
- Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.Phys Med Biol. 2015; 60: 309-337https://doi.org/10.1088/0031-9155/60/1/309
- Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.Phys Med Biol. 2015; 60 (corrigendum): 2619
- A generic high-dose rate 192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism.Med Phys. 2015; 42: 3048-3062https://doi.org/10.1118/1.4921020
- Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.Phys Med Biol. 2017; 62: 146-164https://doi.org/10.1088/1361-6560/aa4f6a
- Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms.Med Phys. 2015; 42: 1566-1574https://doi.org/10.1118/1.4914390
- On the experimental validation of model-based dose calculation algorithms for 192Ir HDR brachytherapy treatment planning.Phys Med Biol. 2017; 62: 4160-4182https://doi.org/10.1088/1361-6560/aa6a01
- Benchmarking BrachyDose: Voxel based EGSnrc Monte Carlo calculations of TG-43 dosimetry parameters.Med Phys. 2017; 34: 445-457https://doi.org/10.1118/1.2400843
Werner CJ, Bull JS, Solomon CJJ, Brown FB. et al. MCNP6.2 Release Notes, Los Alamos National Laboratory, report LA-UR-18-20808, 2018.
- A medical image-based graphical platform - Features, applications and relevance for brachytherapy.Brachytherapy. 2014; 13: 632-639https://doi.org/10.1016/j.brachy.2014.07.004
- Brachytherapy organ dose estimation using Monte Carlo simulations of realistic patient models.Annu Int Conf IEEE Eng Med Biol Soc. 2018; 7: 6149-6152https://doi.org/10.1109/EMBC.2018.8513678
- Monte Carlo and experimental dosimetry of an 125I brachytherapy seed.Med Phys. 2006; 33: 4675-4684https://doi.org/10.1118/1.2388158
- Update of the CLRP TG-43 parameter database for low-energy brachytherapy sources.Med Phys. 2020; 47: 4656-4669https://doi.org/10.1002/mp.14249
- Nuclear data sheets for A = 192 Nucl.Data Sheets. 2012; 113: 1871-2111
- An EGSnrc Monte Carlo-calculated database of TG-43 parameters.Med Phys. 2008; 35: 4228-4241https://doi.org/10.1118/1.2965360
- Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code.Med Phys. 2002; 29: 391-402https://doi.org/10.1118/1.1445413
- The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.Med Phys. 2011; 38: 1526-1533https://doi.org/10.1118/1.3549760
- Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy.Phys Med Biol. 2013; 58: 2561-2579https://doi.org/10.1088/0031-9155/58/8/2561
Berger MJ 1994 ESTAR, PSTAR, ASTAR A PC packagea for calculating stopping powers and ranges of electrons, protons and helium ions Report IAEA-NDS-144
- SU-GG-T-292: The response of LiF:Mg,Ti thermoluminescent dosimeters to low-energy photons.Med Phys. 2008; 35: 2792https://doi.org/10.1118/1.2962044
- Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeedTM brachytherapy source.Med Phys. 2010; 37: 1681-1688https://doi.org/10.1118/1.3360899
- A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM task group No. 138 and GEC-ESTRO.Med Phys. 2011; 38: 782-801https://doi.org/10.1118/1.3533720
- Spectroscopic characterization of a novel electronic brachytherapy system.Phys Med Biol. 2008; 53: 61-75https://doi.org/10.1088/0031-9155/53/1/004
- On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry.Phys Med Biol. 2012; 57: 2117-2136https://doi.org/10.1088/0031-9155/57/8/2117
Article info
Publication history
Footnotes
Disclosure: The authors report no proprietary or commercial interest in any product mentioned or concept discussed in this article.