Advertisement

Permanent LDR prostate brachytherapy: Comprehensive characterization of seed-dynamics within the prostate on a seed-only level

  • Andre Karius
    Correspondence
    Corresponding author. Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Bavaria, Germany.
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Michael Lotter
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Stephan Kreppner
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Verena Schaller
    Affiliations
    Faculty of Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany
    Search for articles by this author
  • Dorota Lubgan
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Johanna Grigo
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Rainer Fietkau
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Author Footnotes
    # Contributed equally
    Vratislav Strnad
    Footnotes
    # Contributed equally
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Author Footnotes
    # Contributed equally
    Christoph Bert
    Footnotes
    # Contributed equally
    Affiliations
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

    Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Bavaria, Germany
    Search for articles by this author
  • Author Footnotes
    # Contributed equally

      Abstract

      PURPOSE

      Seed brachytherapy is a well-established treatment modality for prostate cancer. However, there is still a lack of profound characterizations of seed motions within the prostate. We assessed these dynamics between day 0 and day 30 of brachytherapy.

      METHODS

      We considered 45 patients with 2408 implanted seeds, and performed a 1:1 assignment between their positions on post-plan CT (nominal day 30) and intraoperative ultrasound (day 0). Geometric seed arrangement changes were measured for each patient and the entire collective. The impact of seed strand-lengths and implant regions was investigated. Correlations with patient characteristics were evaluated. We determined corresponding dosimetric effects by calculating common dose metrics.

      RESULTS

      We found a median seed displacement of 4.3 mm [interquartile range: 3.1–6.9 mm], occurring preferentially in superior-inferior direction. Single and double strands moved significantly stronger than strands of higher lengths. Seed dynamics was more pronounced in base (5.6 mm [3.7–10.7 mm]) and apex (6.5 mm [4.1–15.0 mm]) than in the mid-gland (3.8 mm [2.7–5.0 mm]), and less pronounced in peripheral (4.3 mm [3.0–6.7 mm]) than in urethra-near (5.5 mm [3.5–10.7 mm]) regions. Correlations of seed dynamics with prostate volume changes and the number of implanted seeds and needles were found. D90 (dose that 90% of the prostate receives) varied by a median of 3 Gy [-6 to 15 Gy] between treatment plan and post-plan, but >40 Gy for individual patients.

      CONCLUSIONS

      Reducing seed dynamics is important to ensure a high treatment quality. For this, strands containing ≥3 seeds may be useful, implantations in base-, apex-, and urethra-near zone should be avoided, and the number of needles and seeds may be minimized where possible.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brachytherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moll M.
        • Renner A.
        • Kirisits C.
        • et al.
        Comparison of EBRT and I-125 seed brachytherapy concerning outcome in intermediate-risk prostate cancer.
        Strahlenther Onkol. 2021; https://doi.org/10.1007/s00066-021-01815-z
        • Moll M.
        • Paschen C.
        • Zaharie A.
        • et al.
        Treatment of low-risk prostate cancer: A retrospective study with 477 patients comparing external beam radiotherapy and I-125 seeds brachytherapy in terms of biochemical control and late side effects.
        Strahlenther Onkol. 2021; https://doi.org/10.1007/s00066-020-01657-1
        • Moran B.J.
        • Kroulakis A.
        • Decesaris C.
        • et al.
        Long-term outcomes of a prospective randomized trial of 131 Cs/125 I permanent prostate brachytherapy.
        Brachytherapy. 2021; https://doi.org/10.1016/j.brachy.2020.07.005
        • Major T.
        • Polgar C.
        • Jorgo K.
        • et al.
        Dosimetric comparison between treatment plans of patients treated with low-dose-rate vs. high-dose-rate interstitial prostate brachytherapy as monotherapy: Initial findings of a randomized clinical trial.
        Brachytherapy. 2017; https://doi.org/10.1016/j.brachy.2017.02.003
        • Peters M.
        • Smit Duijzentkunst S.A.
        • Westendorp H.
        • et al.
        Adaptive cone-beam CT planning improves long-term biochemical disease-free survival for 125 I prostate brachytherapy.
        Brachytherapy. 2017; https://doi.org/10.1016/j.brachy.2016.11.018
        • Viktorin-Baier P.
        • Putora P.M.
        • Schmid H.P.
        • et al.
        Long-term oncological and functional follow-up in low-dose-rate brachytherapy for prostate cancer: Results from the prospective nationwide Swiss registry.
        BJU Int. 2020; https://doi.org/10.1111/bju.15003
        • Logghe P.
        • Verlinde R.
        • Bouttens F.
        • et al.
        Long term outcome and side effects in patients receiving low-dose I125 brachytherapy: A retrospective analysis.
        Int Braz J Urol. 2016; https://doi.org/10.1590/S1677-5538.IBJU.2015.0542
        • Li Y.
        • Ngai T.C.K.
        • Zhou S.
        • et al.
        A comparative analysis between low-dose-rate brachytherapy and external beam radiation therapy for low- and intermediate-risk prostate cancer in Asian men.
        Acra Oncol. 2021; https://doi.org/10.1080/0284186X.2021.1950921
        • Barnes J.
        • Kennedy W.R.
        • Fischer-Valuck B.J.
        • et al.
        Treatment patterns of high-dose-rate and low-dose-rate brachytherapy as monotherapy for prostate cancer.
        J Contemp Brachytherapy. 2019; https://doi.org/10.5114/jcb.2019.86974
        • Yamazaki H.
        • Masui K.
        • Suzuki G.
        • et al.
        High-dose-rate brachytherapy monotherapy versus low-dose-rate brachytherapy with or without external beam radiotherapy for clinically localized prostate cancer.
        Radiother Oncol. 2019; https://doi.org/10.1016/j.radonc.2018.10.020
        • Gray C.
        • Campbell K.
        High dose rate brachytherapy versus low dose rate brachytherapy for the treatment of prostate cancer: A review of clinical effectiveness and cost-effectiveness.
        Canadian agency for drugs and technologies in health, Ottawa (ON). 2019 (Available at) (Accessed at: 1 Jan 2022)
        • Slevin F.
        • Rodda S.L.
        • Bownes P.
        • et al.
        A comparison of outcomes for patients with intermediate and high risk prostate cancer treated with low dose rate and high dose rate brachytherapy in combination with external beam radiotherapy.
        Clin Transl Radiat Oncol. 2019; https://doi.org/10.1016/j.ctro.2019.10.001
        • Davis B.J.
        • Horwitz E.M.
        • Lee W.R.
        • et al.
        American brachytherapy society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy.
        Brachytherapy. 2012; https://doi.org/10.1016/j.brachy.2011.07.005
        • Davis B.J.
        • Taira A.V.
        • Nguyen P.L.
        • et al.
        ACR appropriateness criteria: Permanent source brachytherapy for prostate cancer.
        Brachytherapy. 2017; https://doi.org/10.1016/j.brachy.2016.10.002
        • Maletzki P.
        • Schwab C.
        • Markart P.
        • et al.
        Late seed migration after prostate brachytherapy with Iod-125 permanent implants.
        Prostate Int. 2018; https://doi.org/10.1016/j.prnil.2017.09.003
        • Merrell K.W.
        • Davis B.J.
        • Goulet C.C.
        • et al.
        Reducing seed migration to near zero with stranded-seed implants: Comparison of seed migration rates to the chest in 1000 permanent prostate brachytherapy patients undergoing implants with loose or stranded seeds.
        Brachytherapy. 2019; https://doi.org/10.1016/j.brachy.2019.01.007
        • Birckhead B.J.
        • Fossum C.C.
        • Deufel C.L.
        • et al.
        Stranded seed displacement, migration, and loss after permanent prostate brachytherapy as estimated by day 0 fluoroscopy and 4-month postimplant pelvic x-ray.
        Brachytherapy. 2016; https://doi.org/10.1016/j.brachy.2016.07.004
        • Pinkawa M.
        • Gagel B.
        • Asadpour B.
        • et al.
        Seed displacements after permanent brachytherapy for prostate cancer in dependence on the prostate level.
        Strahlenther Onkol. 2008; https://doi.org/10.1007/s00066-008-1886-3
        • Vassiliev O.N.
        • Kudchadker R.J.
        • Swanson D.A.
        • et al.
        Displacement of periurethral stranded seeds and its dosimetric consequences in prostate brachytherapy.
        Brachytherapy. 2011; https://doi.org/10.1016/j.brachy.2011.01.002
        • Westendorp H.
        • Nuver T.T.
        • Hoekstra C.J.
        • et al.
        Edema and seed displacements affect intraoperative permanent prostate brachytherapy dosimetry.
        Int J Radiat Oncol Biol Phys. 2016; https://doi.org/10.1016/j.ijrobp.2016.04.015
      1. The SciPy community: scipy.cluster.vq.kmeans2. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html Accessed at: 1 Jan 2022.

        • Arthur D.
        • Vassilvitskii S.
        k-means++: The advantages of careful seeding. SODA '07.
        in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. 2007 (Available at: https://dl.acm.org/doi/10.5555/1283383.1283494 Accessed at: 1 Jan 2022)
      2. Shindler M. Approximation algorithms for themetric k-median problem. 2008. Available at:https://web.archive.org/web/20110927100642/http:/www.cs.ucla.edu/∼shindler/shindler-kMedian-survey.pdf Accessed at: 1 Jan 2022.

        • Sihono D.S.
        • Ehmann M.
        • Heitmann S.
        • et al.
        Determination of intrafraction prostate motion during external beam radiation therapy with a transperineal 4-dimensional ultrasound real-time tracking system.
        Int J Radiat Oncol Biol Phys. 2018; https://doi.org/10.1016/j.ijrobp.2018.01.040
        • Buckley J.G.
        • Dowling J.A.
        • Sidhom M.
        • et al.
        Pelvic organ motion and dosimetric implications during horizontal patient rotation for prostate radiation therapy.
        Med Phys. 2021; https://doi.org/10.1002/mp.14579
        • Arun K.S.
        • Huang T.S.
        • Blostein S.D.
        • et al.
        Least-squares fitting of two 3-d point sets.
        IEEE transactions on pattern analysis and machine intelligence, New York, USA. 1987https://doi.org/10.1109/TPAMI.1987.4767965
        • Zahneisen B.
        • Lovell-Smith Zaitsev M
        • et al.
        Fast noniterative calibration of an external motion tracking device.
        Magn Reson Medicine. 2014; https://doi.org/10.1002/mrm.24806
        • Mundbodh R.
        • Knisely J.P.S.
        • Jaffray D.A.
        • et al.
        2D–3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field-of-view 2D kV radiograph.
        Med Phys. 2018; https://doi.org/10.1002/mp.12823
        • Chng N.
        • Spadinger I.
        • Morris W.J.
        • et al.
        Prostate brachytherapy postimplant dosimetry: Automatic plan reconstruction of stranded implants.
        Med Phys. 2011; https://doi.org/10.1118/1.3525839
        • Ahmed D.A.
        • Benhamou S.
        • Bonsall M.B.
        • et al.
        Three-dimensional random walk models of individual animal movement and their application to trap counts modelling.
        J Theor Biol. 2021; https://doi.org/10.1016/j.jtbi.2021.110728
        • Rivard M.J.
        • Ballester F.
        • Butler W.M.
        • et al.
        Erratum: Supplement 2 for the 2004 update of the AAPM task group no. 43 report: Joint recommendations by the AAPM and GEC-ESTRO.
        Med. Phys. 2017; 44: e297-e338https://doi.org/10.1002/mp.12728
        • Rivard M.J.
        • Coursey B.M.
        • DeWerd L.A.
        • et al.
        Update of AAPM task group no. 43 report: A revised AAPM protocol for brachytherapy dose calculations.
        Med Phys. 2014; https://doi.org/10.1118/1.1646040
        • Baltas D.
        • Sakelliou L.
        • Zamboglou N.
        The physics of modern brachytherapy for oncology.
        CRC Press. 2019;
        • Rose J.
        • Liu D.
        • Boychack O.
        • et al.
        Unexpected seed migration in prostate brachytherapy implants coincident with change in seed stranding product.
        Cureus. 2017; https://doi.org/10.7759/cureus.1243
        • Usmani N.
        • Chng N.
        • Spadinger I.
        • et al.
        Lack of significant intraprostatic migration of stranded iodine-125 sources in prostate brachytherapy implants.
        Brachytherapy. 2011; https://doi.org/10.1016/j.brachy.2010.10.001
        • Sloboda R.S.
        • Usmani N.
        • Pedersen J.
        • et al.
        Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging.
        Brachytherapy. 2022; https://doi.org/10.1016/j.brachy.2009.09.008
        • Merrick G.S.
        • Butler W.M.
        • Dorsey A.T.
        • et al.
        Influence of timing on the dosimetric analysis of transperineal ultrasound-guided, prostatic conformal brachytherapy.
        Radiat Oncol Investig. 1998; https://doi.org/10.1002/(SICI)1520-6823(1998)6:4<182::AID-ROI6>3.0.CO;2-U
        • Chng N.
        • Spadinger I.
        • Rasoda R.
        • et al.
        Prostate brachytherapy postimplant dosimetry: Seed orientation and the impact of dosimetric anisotropy in stranded implants.
        Med Phys. 2012; https://doi.org/10.1118/1.3671921
        • Corbett J.F.
        • Jezioranski J.J.
        • Crook J.
        • et al.
        The effect of seed orientation deviations on the quality of 125I prostate implants.
        Phys Med Biol. 2001; https://doi.org/10.1088/0031-9155/46/11/303
        • Gao M.
        • Wang J.Z.
        • Nag S.
        • et al.
        Effects of seed migration on post-implant dosimetry of prostate brachytherapy.
        Med Phys. 2007; https://doi.org/10.1118/1.2409748
        • Warrell G.R.
        • Xing Y.
        • Podder T.K.
        • et al.
        Reduction of seed motion using a bio-absorbable polymer coating during permanent prostate brachytherapy using a mick applicator technique.
        J Appl Clin Med Phys. 2018; https://doi.org/10.1002/acm2.12254
        • Grimm P.
        • Sylvester J.
        Advances in brachytherapy.
        Rev Urol. 2004; 6 (PMID: 16985869): S37-S48
        • Major T.
        • Agoston P.
        • Fröglich G.
        • et al.
        Loose versus stranded seeds in permanent prostate brachytherapy: Dosimetric comparison of intraoperative plans.
        Phys Med. 2014; https://doi.org/10.1016/j.ejmp.2014.08.002
        • Saibishkumar E.P.
        • Borg J.
        • Yeung I.
        • et al.
        Loose seeds vs. stranded seeds: A comparison of critical organ dosimetry and acute toxicity in (125)I permanent implant for low-risk prostate cancer.
        Brachytherapy. 2008; https://doi.org/10.1016/j.brachy.2007.12.005
        • Smith W.L.
        • Lewis C.
        • Bauman G.
        • et al.
        Prostate volume contouring: A 3D analysis of segmentation using 3DTRUS, CT, and MR.
        Int J Radiat Oncol Biol Phys. 2007; https://doi.org/10.1016/j.ijrobp.2006.11.027
        • Mashouf S.
        • Safigholi H.
        • Merino T.
        • et al.
        Sensitivity of clinically relevant dosimetric parameters to contouring uncertainty in postimplant dosimetry of low-dose-rate prostate permanent seed brachytherapy.
        Brachytherapy. 2016; https://doi.org/10.1016/j.brachy.2016.08.013