Advertisement

Contemporary image-guided cervical cancer brachytherapy: Consensus imaging recommendations from the Society of Abdominal Radiology and the American Brachytherapy Society

      ABSTRACT

      PURPOSE

      To present recommendations for the use of imaging for evaluation and procedural guidance of brachytherapy for cervical cancer patients.

      METHODS

      An expert panel comprised of members of the Society of Abdominal Radiology Uterine and Ovarian Cancer Disease Focused Panel and the American Brachytherapy Society jointly assessed the existing literature and provide data-driven guidance on imaging protocol development, interpretation, and reporting.

      RESULTS

      Image-guidance during applicator implantation reduces rates of uterine perforation by the tandem. Postimplant images may be acquired with radiography, computed tomography (CT), or magnetic resonance imaging (MRI), and CT or MRI are preferred due to a decrease in severe complications. Pre-brachytherapy T2-weighted MRI may be used as a reference for contouring the high-risk clinical target volume (HR-CTV) when CT is used for treatment planning. Reference CT and MRI protocols are provided for reference.

      CONCLUSIONS

      Image-guided brachytherapy in locally advanced cervical cancer is essential for optimal patient management. Various imaging modalities, including orthogonal radiographs, ultrasound, computed tomography, and magnetic resonance imaging, remain integral to the successful execution of image-guided brachytherapy.

      Keywords

      Abbreviations:

      ABS (American Brachytherapy Society), CT (computed tomography), CTV (clinical target volume), DWI (diffusion-weighted imaging), EBRT (external beam radiotherapy), FIGO (International Federation of Gynecology and Obstetrics), GEC-ESTRO (Gynaecological Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology), HR-CTV (high-risk clinical target volume), ICRU (International Commission on Radiation Units and Measurements), IMRT (intensity modulated radiotherapy), MRI (magnetic resonance imaging), OAR (organ at risk), RT (radiotherapy), SAR (Society of Abdominal Radiology), TAUS (transabdominal ultrasound), TRUS (transrectal ultrasound), UOC DFP (Uterine and Ovarian Cancer Disease Focused Panel), US (ultrasound)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brachytherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Howlader N.
        • Noone A.
        • Krapcho M.
        • et al.
        SEER cancer statistics review, 1975-2017.
        National Cancer Institute, Bethesda, MD2020
        • Torre L.A.
        • Islami F.
        • Siegel R.L.
        • Ward E.M.
        Global cancer in women: burden and trends.
        Cancer Epidemiol Biomarkers Prev. 2017; 26: 444-457https://doi.org/10.1158/1055-9965.Epi-16-0858
        • Lee S.I.
        • Atri M.
        2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging.
        Radiology. 2019; 292: 15-24https://doi.org/10.1148/radiol.2019190088
        • Bhatla N.
        • Berek J.S.
        • Cuello Fredes M.
        • et al.
        Revised FIGO staging for carcinoma of the cervix uteri.
        Int J Gynecol Obstet. 2019; 145: 129-135https://doi.org/10.1002/ijgo.12749
        • Hricak H.
        • Gatsonis C.
        • Coakley F.V.
        • et al.
        Early invasive cervical cancer: CT and MR imaging in preoperative evaluation—ACRIN/GOG comparative study of diagnostic performance and interobserver variability.
        Radiology. 2007; 245: 491-498https://doi.org/10.1148/radiol.2452061983
        • Mitchell D.G.
        • Snyder B.
        • Coakley F.
        • et al.
        Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study.
        J Clin Oncol. 2006; 24: 5687-5694https://doi.org/10.1200/jco.2006.07.4799
        • Rose P.G.
        • Bundy B.N.
        • Watkins E.B.
        • et al.
        Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer.
        New Engl J Med. 1999; 340: 1144-1153https://doi.org/10.1056/nejm199904153401502
        • Chino J.
        • Annunziata C.M.
        • Beriwal S.
        • et al.
        The ASTRO clinical practice guidelines in cervical cancer: optimizing radiation therapy for improved outcomes.
        Gynecol Oncol. 2020; 159: 607-610https://doi.org/10.1016/j.ygyno.2020.09.015
        • Chino J.
        • Annunziata C.M.
        • Beriwal S.
        • et al.
        Radiation therapy for cervical cancer: executive summary of an ASTRO clinical practice guideline.
        Pract Radiat Oncol. 2020; 10: 220-234https://doi.org/10.1016/j.prro.2020.04.002
        • Li R.
        • Shinde A.
        • Chen Y.-.J.
        • et al.
        Survival benefit of adjuvant brachytherapy after hysterectomy with positive surgical margins in cervical cancer.
        Int J Radiat Oncol Biol Phys. 2018; 102: 373-382https://doi.org/10.1016/j.ijrobp.2018.05.076
        • Han K.
        • Milosevic M.
        • Fyles A.
        • et al.
        Trends in the utilization of brachytherapy in cervical cancer in the United States.
        Int J Radiat Oncol Biol Phys. 2013; 87: 111-119https://doi.org/10.1016/j.ijrobp.2013.05.033
        • Jastaniyah N.
        • Yoshida K.
        • Tanderup K.
        • et al.
        A volumetric analysis of GTV(D) and CTV(HR) as defined by the GEC ESTRO recommendations in FIGO stage IIB and IIIB cervical cancer patients treated with IGABT in a prospective multicentric trial (EMBRACE).
        Radiother Oncol. 2016; 120: 404-411https://doi.org/10.1016/j.radonc.2016.05.029
        • Pötter R.
        • Tanderup K.
        • Schmid M.P.
        • et al.
        MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): a multicentre prospective cohort study.
        Lancet Oncol. 2021; 22: 538-547https://doi.org/10.1016/s1470-2045(20)30753-1
        • Fokdal L.
        • Sturdza A.
        • Mazeron R.
        • et al.
        Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study.
        Radiother Oncol. 2016; 120: 434-440https://doi.org/10.1016/j.radonc.2016.03.020
        • Pareek V.
        • Barthwal M.
        • Giridhar P.
        • et al.
        A phase III randomised trial of trans-abdominal ultrasound in improving application quality and dosimetry of intra-cavitary brachytherapy in locally advanced cervical cancer.
        Gynecol Oncol. 2021; 160: 375-378https://doi.org/10.1016/j.ygyno.2020.11.032
        • Granai C.O.
        • Doherty F.
        • Allee P.
        • et al.
        Ultrasound for diagnosing and preventing malplacement of intrauterine tandems.
        Obstet Gynecol. 1990; 75 (Published 1990/01/01): 110-113
        • Sharma D.N.
        • Rath G.K.
        • Thulkar S.
        • et al.
        Use of transrectal ultrasound for high dose rate interstitial brachytherapy for patients of carcinoma of uterine cervix.
        J Gynecol Oncol. 2010; 21: 12-17https://doi.org/10.3802/jgo.2010.21.1.12
        • Cassell K.J.
        A fundamental approach to the design of a dose-rate calculation program for use in brachytherapy planning.
        Br J Radiol. 1983; 56: 113-119https://doi.org/10.1259/0007-1285-56-662-113
        • Fellner C.
        • Pötter R.
        • Knocke T.H.
        • Wambersie A.
        Comparison of radiography- and computed tomography-based treatment planning in cervix cancer in brachytherapy with specific attention to some quality assurance aspects.
        Radiother Oncol. 2001; 58: 53-62https://doi.org/10.1016/S0167-8140(00)00282-6
        • Pelloski C.E.
        • Palmer M.
        • Chronowski G.M.
        • et al.
        Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation doses delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer.
        Int J Radiat Oncol Biol Phys. 2005; 62: 131-137https://doi.org/10.1016/j.ijrobp.2004.09.059
        • Derks K.
        • Steenhuijsen J.L.G.
        • van den Berg H.A.
        • et al.
        Impact of brachytherapy technique (2D versus 3D) on outcome following radiotherapy of cervical cancer.
        J Contemp Brachyther. 2018; 10: 17-25https://doi.org/10.5114/jcb.2018.73955
        • Stuecklschweiger G.F.
        • Arian-Schad K.S.
        • Poier E.
        • et al.
        Bladder and rectal dose of gynecologic high-dose-rate implants: comparison of orthogonal radiographic measurements with in vivo and CT-assisted measurements.
        Radiology. 1991; 181: 889-894https://doi.org/10.1148/radiology.181.3.1947116
        • D'Souza D.
        • Baldassarre F.
        • Morton G.
        • et al.
        Imaging technologies for high dose rate brachytherapy for cervical cancer: a systematic review.
        Clin Oncol (R Coll Radiol). 2011; 23: 460-475https://doi.org/10.1016/j.clon.2011.02.014
        • Pötter R.
        • Georg P.
        • Dimopoulos J.C.
        • et al.
        Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer.
        Radiother Oncol. 2011; 100: 116-123https://doi.org/10.1016/j.radonc.2011.07.012
        • Tan L.T.
        • Pötter R.
        • Sturdza A.
        • et al.
        Change in patterns of failure after image-guided brachytherapy for cervical cancer: analysis from the RetroEMBRACE study.
        Int J Radiat Oncol Biol Phys. 2019; 104: 895-902https://doi.org/10.1016/j.ijrobp.2019.03.038
        • Halperin J.L.
        • Levine G.N.
        • Al-Khatib S.M.
        • et al.
        Further evolution of the ACC/AHA clinical practice guideline recommendation classification system: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        J Am Coll Cardiol. 2016; 67: 1572-1574https://doi.org/10.1016/j.jacc.2015.09.001
        • Granai C.O.
        • Allee P.
        • Doherty F.
        • et al.
        Intraoperative real-time ultrasonography during intrauterine tandem placement.
        Obstet Gynecol. 1986; 67 (Published 1986/01/01): 112-114
        • Petereit D.G.
        • Sarkaria J.N.
        • Chappell R.J.
        Perioperative morbidity and mortality of high-dose-rate gynecologic brachytherapy.
        Int J Radiat Oncol Biol Phys. 1998; 42: 1025-1031https://doi.org/10.1016/s0360-3016(98)00349-6
        • Akbas T.
        • Ugurluer G.
        • Acil M.
        • et al.
        Intraoperative sonographic guidance for intracavitary brachytherapy of cervical cancer.
        J Clin Ultrasound. 2018; 46: 8-13https://doi.org/10.1002/jcu.22510
        • Davidson M.T.
        • Yuen J.
        • D'Souza D.P.
        • et al.
        Optimization of high-dose-rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance.
        Brachytherapy. 2008; 7: 248-253https://doi.org/10.1016/j.brachy.2008.03.004
        • Schaner P.E.
        • Caudell J.J.
        • De Los
        • Santos J.F.
        • et al.
        Intraoperative ultrasound guidance during intracavitary brachytherapy applicator placement in cervical cancer: the University of Alabama at Birmingham experience.
        Int J Gynecol Cancer. 2013; 23: 559-566https://doi.org/10.1097/IGC.0b013e3182859302
        • Sapienza L.G.
        • Jhingran A.
        • Kollmeier M.A.
        • et al.
        Decrease in uterine perforations with ultrasound image-guided applicator insertion in intracavitary brachytherapy for cervical cancer: a systematic review and meta-analysis.
        Gynecol Oncol. 2018; 151: 573-578https://doi.org/10.1016/j.ygyno.2018.10.011
        • Bachand F.
        • Lim P.
        • Aquino-Parsons C.
        Image-guided brachytherapy planning: identification of uterine perforations in clinical practice.
        Brachytherapy. 2010; 9: S27https://doi.org/10.1016/j.brachy.2010.02.016
        • Bahadur Y.A.
        • Eltaher M.M.
        • Hassouna A.H.
        • et al.
        Uterine perforation and its dosimetric implications in cervical cancer high-dose-rate brachytherapy.
        J Contemp Brachytherapy. 2015; 7: 41-47https://doi.org/10.5114/jcb.2015.48898
        • Tsai Y.L.
        • Yu P.C.
        • Nien H.H.
        • et al.
        Radiation dose in the uterine perforation by tandem in 3-dimensional cervical cancer brachytherapy.
        Med Dosim. 2019; 44: e59-e63https://doi.org/10.1016/j.meddos.2019.01.006
        • Tharavichitkul E.
        • Chakrabandhu S.
        • Klunklin P.
        • et al.
        Intermediate-term results of trans-abdominal ultrasound (TAUS)-guided brachytherapy in cervical cancer.
        Gynecol Oncol. 2018; 148: 468-473https://doi.org/10.1016/j.ygyno.2018.01.015
        • Narayan K.
        • van Dyk S.
        • Bernshaw D.
        • et al.
        Ultrasound guided conformal brachytherapy of cervix cancer: survival, patterns of failure, and late complications.
        J Gynecol Oncol. 2014; 25: 206-213https://doi.org/10.3802/jgo.2014.25.3.206
        • Tharavichitkul E.
        • Muangwong P.
        • Chakrabandhu S.
        • et al.
        Comparison of clinical outcomes achieved with image-guided adaptive brachytherapy for cervix cancer using CT or transabdominal ultrasound.
        Brachytherapy. 2021; 20: 543-549https://doi.org/10.1016/j.brachy.2020.12.010
        • Mahantshetty U.
        • Khanna N.
        • Swamidas J.
        • et al.
        Trans-abdominal ultrasound (US) and magnetic resonance imaging (MRI) correlation for conformal intracavitary brachytherapy in carcinoma of the uterine cervix.
        Radiother Oncol. 2012; 102: 130-134https://doi.org/10.1016/j.radonc.2011.08.001
        • van Dyk S.
        • Kondalsamy-Chennakesavan S.
        • Schneider M.
        • et al.
        Assessing changes to the brachytherapy target for cervical cancer using a single MRI and serial ultrasound.
        Brachytherapy. 2015; 14: 889-897https://doi.org/10.1016/j.brachy.2015.04.011
        • van Dyk S.
        • Kondalsamy-Chennakesavan S.
        • Schneider M.
        • et al.
        Comparison of measurements of the uterus and cervix obtained by magnetic resonance and transabdominal ultrasound imaging to identify the brachytherapy target in patients with cervix cancer.
        Int J Radiat Oncol Biol Phys. 2014; 88: 860-865https://doi.org/10.1016/j.ijrobp.2013.12.004
        • Federico M.
        • Hernandez-Socorro C.R.
        • Ribeiro I.
        • et al.
        Prospective intra/inter-observer evaluation of pre-brachytherapy cervical cancer tumor width measured in TRUS and MR imaging.
        Radiat Oncol. 2019; 14: 173https://doi.org/10.1186/s13014-019-1352-7
        • Schmid M.P.
        • Nesvacil N.
        • Pötter R.
        • et al.
        Transrectal ultrasound for image-guided adaptive brachytherapy in cervix cancer - an alternative to MRI for target definition?.
        Radiother Oncol. 2016; 120: 467-472https://doi.org/10.1016/j.radonc.2016.01.021
        • Zhang N.
        • Tang Y.
        • Guo X.
        • et al.
        Analysis of dose-effect relationship between DVH parameters and clinical prognosis of definitive radio(chemo)therapy combined with intracavitary/interstitial brachytherapy in patients with locally advanced cervical cancer: a single-center retrospective study.
        Brachytherapy. 2020; 19: 194-200https://doi.org/10.1016/j.brachy.2019.09.008
        • Viswanathan A.N.
        • Thomadsen B.
        American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles.
        Brachytherapy. 2012; 11: 33-46https://doi.org/10.1016/j.brachy.2011.07.003
        • Lin Y.
        • Cheng G.
        • Shi D.
        • et al.
        Clinical application of ultrasound guidance for parametrial treatment of advanced cervical cancer.
        J Ultrasound Med. 2020; 39: 1087-1095https://doi.org/10.1002/jum.15189
        • Knoth J.
        • Nesvacil N.
        • Sturdza A.
        • et al.
        Toward 3D-TRUS image-guided interstitial brachytherapy for cervical cancer.
        Brachytherapy. 2021; 21: 186-192https://doi.org/10.1016/j.brachy.2021.10.005
        • Sethi R.
        • Kuo Y.C.
        • Edraki B.
        • et al.
        Real-time Doppler ultrasound to identify vessels and guide needle placement for gynecologic interstitial brachytherapy.
        Brachytherapy. 2018; 17: 742-746https://doi.org/10.1016/j.brachy.2018.04.006
        • Siebert F.A.
        • Kirisits C.
        • Hellebust T.P.
        • et al.
        GEC-ESTRO/ACROP recommendations for quality assurance of ultrasound imaging in brachytherapy.
        Radiother Oncol. 2020; 148: 51-56https://doi.org/10.1016/j.radonc.2020.02.024
      1. American Institute of Ultrasound in Medicine. Training Guidelines for Physicians and Advanced Clinical Providers Performing Point-of-Care Ultrasound Examinations. Laurel, MD: american Institute of Ultrasound in Medicine; 8/12/2019 2019.

      2. International Commission on Radiation Units and Measurements. ICRU Report 38: Dose and volume specification for reporting intracavitary therapy in gynaecology.Bethesda, MD 1985.

        • Gillin M.T.
        • Kline R.W.
        • Wilson J.F.
        • Cox J.D.
        Single and double plane implants: a comparison of the Manchester System with the Paris System.
        Int J Radiat Oncol Biol Phys. 1984; 10: 921-925https://doi.org/10.1016/0360-3016(84)90396-1
      3. Chassagne D., Dutreix A., Almond P., et al. Report 38. J Int Comm Radiat Units Measure.2016;os 20:NP-NP, https://doi.org/10.1093/jicru/os20.1.Report38.

        • Kang H.C.
        • Shin K.H.
        • Park S.Y.
        • Kim J.Y.
        3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control.
        Radiother Oncol. 2010; 97: 507-513https://doi.org/10.1016/j.radonc.2010.10.002
        • Charra-Brunaud C.
        • Harter V.
        • Delannes M.
        • et al.
        Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study.
        Radiother Oncol. 2012; 103: 305-313https://doi.org/10.1016/j.radonc.2012.04.007
        • Liu Z.S.
        • Guo J.
        • Zhao Y.Z.
        • et al.
        Computed tomography-guided interstitial brachytherapy for locally advanced cervical cancer: introduction of the technique and a comparison of dosimetry with conventional intracavitary brachytherapy.
        Int J Gynecol Cancer. 2017; 27: 768-775https://doi.org/10.1097/igc.0000000000000929
        • Sapienza L.G.
        • Ning M.S.
        • Pellizzon A.C.A.
        • et al.
        Detection of air gaps around the cylinder by postinsertion computed tomography in vaginal cuff brachytherapy: a prospective series, systematic review, and meta-analysis.
        Brachytherapy. 2019; 18: 620-626https://doi.org/10.1016/j.brachy.2019.04.272
        • Woo S.
        • Atun R.
        • Ward Z.J.
        • et al.
        Diagnostic performance of conventional and advanced imaging modalities for assessing newly diagnosed cervical cancer: systematic review and meta-analysis.
        Eur Radiol. 2020; 30: 5560-5577https://doi.org/10.1007/s00330-020-06909-3
      4. American College of Radiology. ACR-AAPM Technical Standard For the Performance of High-dose-rate Brachytherapy Physics. American College of Radiology. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/HDR-BrachyTS.pdf. Published 2020. Updated October 1, 2020. Accessed October 29, 2021.

        • Rigaud B.
        • Cazoulat G.
        • Vedam S.
        • et al.
        Modeling complex deformations of the sigmoid colon between external beam radiation therapy and brachytherapy images of cervical cancer.
        Int J Radiat Oncol Biol Phys. 2020; 106: 1084-1094https://doi.org/10.1016/j.ijrobp.2019.12.028
        • Rigaud B.
        • Klopp A.
        • Vedam S.
        • et al.
        Deformable image registration for dose mapping between external beam radiotherapy and brachytherapy images of cervical cancer.
        Phys Med Biol. 2019; 64115023https://doi.org/10.1088/1361-6560/ab1378
        • Price M.J.
        • Jackson E.F.
        • Gifford K.A.
        • et al.
        Development of prototype shielded cervical intracavitary brachytherapy applicators compatible with CT and MR imaging.
        Med Phys. 2009; 36: 5515-5524https://doi.org/10.1118/1.3253967
        • Roeske J.C.
        • Lund C.
        • Pelizzari C.A.
        • et al.
        Reduction of computed tomography metal artifacts due to the Fletcher-Suit applicator in gynecology patients receiving intracavitary brachytherapy.
        Brachytherapy. 2003; 2: 207-214https://doi.org/10.1016/j.brachy.2003.08.001
        • Xia D.
        • Roeske J.C.
        • Yu L.
        • et al.
        A hybrid approach to reducing computed tomography metal artifacts in intracavitary brachytherapy.
        Brachytherapy. 2005; 4: 18-23https://doi.org/10.1016/j.brachy.2004.11.001
        • Boas F.E.
        • Fleischmann D.
        Evaluation of two iterative techniques for reducing metal artifacts in computed tomography.
        Radiology. 2011; 259: 894-902https://doi.org/10.1148/radiol.11101782
        • Katsura M.
        • Sato J.
        • Akahane M.
        • et al.
        Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists.
        RadioGraphics. 2018; 38: 450-461https://doi.org/10.1148/rg.2018170102
        • Elzibak A.H.
        • Kager P.M.
        • Soliman A.
        • et al.
        Quantitative CT assessment of a novel direction-modulated brachytherapy tandem applicator.
        Brachytherapy. 2018; 17: 465-475https://doi.org/10.1016/j.brachy.2017.10.006
        • Morsbach F.
        • Bickelhaupt S.
        • Wanner G.A.
        • et al.
        Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions.
        Radiology. 2013; 268: 237-244https://doi.org/10.1148/radiol.13122089
        • Albrecht M.H.
        • Vogl T.J.
        • Martin S.S.
        • et al.
        Review of clinical applications for virtual monoenergetic dual-energy CT.
        Radiology. 2019; 293: 260-271https://doi.org/10.1148/radiol.2019182297
        • Venkatesan A.M.
        • Menias C.O.
        • Jones K.M.
        • et al.
        MRI for radiation therapy planning in human papillomavirus-associated gynecologic cancers.
        Radiographics. 2019; 39: 1476-1500https://doi.org/10.1148/rg.2019180121
        • Hegazy N.
        • Pötter R.
        • Kirisits C.
        • et al.
        High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination.
        Acta Oncol. 2013; 52: 1345-1352https://doi.org/10.3109/0284186x.2013.813068
        • Krishnatry R.
        • Patel F.D.
        • Singh P.
        • et al.
        CT or MRI for image-based brachytherapy in cervical cancer.
        Jpn J Clin Oncol. 2012; 42: 309-313https://doi.org/10.1093/jjco/hys010
        • Viswanathan A.N.
        • Dimopoulos J.
        • Kirisits C.
        • et al.
        Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours.
        Int J Radiat Oncol Biol Phys. 2007; 68: 491-498https://doi.org/10.1016/j.ijrobp.2006.12.021
        • Thomeer M.G.
        • Gerestein C.
        • Spronk S.
        • et al.
        Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma: systematic review and meta-analysis.
        Eur Radiol. 2013; 23: 2005-2018https://doi.org/10.1007/s00330-013-2783-4
        • Woo S.
        • Suh C.H.
        • Kim S.Y.
        • et al.
        Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: an updated systematic review and meta-analysis of the literature between 2012 and 2016.
        Eur Radiol. 2018; 28: 530-541https://doi.org/10.1007/s00330-017-4958-x
      5. American College of Radiology. ACR-SAR-SPR practice parameter for the performance of magnetic resonance imaging (MRI) of the soft-tissue components of the pelvis. American College of Radiology. Practice Parameters and Technical Standards Web site. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-SoftTissue-Pel.pdf. Published 2020. Updated October 1, 2020. Accessed October 28, 2021.

        • Rauch G.M.
        • Kaur H.
        • Choi H.
        • et al.
        Optimization of MR imaging for pretreatment evaluation of patients with endometrial and cervical cancer.
        RadioGraphics. 2014; 34: 1082-1098https://doi.org/10.1148/rg.344140001
      6. Uterine and Ovarian Cancer Disease Focused Panel. Cervical Cancer MRI Scanning Protocol. Society of Abdominal Radiology. https://abdominalradiology.site-ym.com/page/DFPUOC. Accessed October 15, 2021.

        • Dimopoulos J.C.
        • Petrow P.
        • Tanderup K.
        • et al.
        Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy.
        Radiother Oncol. 2012; 103: 113-122https://doi.org/10.1016/j.radonc.2011.12.024
        • Patel-Lippmann K.
        • Robbins J.B.
        • Barroilhet L.
        • et al.
        MR imaging of cervical cancer.
        Magn Reson Imaging Clin N Am. 2017; 25: 635-649https://doi.org/10.1016/j.mric.2017.03.007
        • Kallehauge J.F.
        • Tanderup K.
        • Haack S.
        • et al.
        Apparent diffusion coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: dependence on b-values used.
        Acta Oncol (Madr). 2010; 49: 1017-1022https://doi.org/10.3109/0284186X.2010.500305
        • Higaki T.
        • Nakamura Y.
        • Tatsugami F.
        • et al.
        Introduction to the technical aspects of computed diffusion-weighted imaging for radiologists.
        RadioGraphics. 2018; 38: 1131-1144https://doi.org/10.1148/rg.2018170115
        • Mongula J.E.
        • Bakers F.C.H.
        • Mihl C.
        • et al.
        Assessment of parametrial invasion of cervical carcinoma, the role of T2-weighted MRI and diffusion weighted imaging with or without fusion.
        Clin Radiol. 2019; 74: 790-796https://doi.org/10.1016/j.crad.2019.07.003
        • Schreuder S.M.
        • Lensing R.
        • Stoker J.
        • Bipat S.
        Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: a systematic review.
        J Magn Reson Imaging. 2015; 42: 572-594https://doi.org/10.1002/jmri.24784
        • Vincens E.
        • Balleyguier C.
        • Rey A.
        • et al.
        Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy : correlation of radiologic findings with surgicopathologic results.
        Cancer. 2008; 113: 2158-2165https://doi.org/10.1002/cncr.23817
        • Hori M.
        • Kim T.
        • Onishi H.
        • et al.
        Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T–initial experience.
        Radiology. 2011; 258: 154-163https://doi.org/10.1148/radiol.10100866
        • Ning M.S.
        • Venkatesan A.M.
        • Stafford R.J.
        • et al.
        Developing an intraoperative 3T MRI-guided brachytherapy program within a diagnostic imaging suite: methods, process workflow, and value-based analysis.
        Brachytherapy. 2020; 19: 427-437https://doi.org/10.1016/j.brachy.2019.09.010
        • Agrawal G.
        • Riherd J.M.
        • Busse R.F.
        • et al.
        Evaluation of uterine anomalies: 3D FRFSE cube versus standard 2D FRFSE.
        Am J Roentgenol. 2009; 193: W558-W562https://doi.org/10.2214/AJR.09.2716
        • Proscia N.
        • Jaffe T.A.
        • Neville A.M.
        • et al.
        MRI of the pelvis in women: 3D versus 2D T2-weighted technique.
        Am J Roentgenol. 2010; 195: 254-259https://doi.org/10.2214/AJR.09.3226
        • Frank S.J.
        • Stafford R.J.
        • Bankson J.A.
        • et al.
        A novel MRI marker for prostate brachytherapy.
        Int J Radiat Oncol Biol Phys. 2008; 71: 5-8https://doi.org/10.1016/j.ijrobp.2008.01.028
        • Schindel J.
        • Muruganandham M.
        • Pigge F.C.
        • Anderson J.
        • Kim Y.
        Magnetic resonance imaging (MRI) markers for MRI-guided high-dose-rate brachytherapy: novel marker-flange for cervical cancer and marker catheters for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2013; 86: 387-393https://doi.org/10.1016/j.ijrobp.2012.12.026
        • Ning M.S.
        • Vedam S.
        • Ma J.
        • et al.
        Clinical utility and value contribution of an MRI-positive line marker for image-guided brachytherapy in gynecologic malignancies.
        Brachytherapy. 2020; 19: 305-315https://doi.org/10.1016/j.brachy.2019.12.005
        • Aubry J.F.
        • Cheung J.
        • Morin O.
        • et al.
        Investigation of geometric distortions on magnetic resonance and cone beam computed tomography images used for planning and verification of high-dose rate brachytherapy cervical cancer treatment.
        Brachytherapy. 2010; 9: 266-273https://doi.org/10.1016/j.brachy.2009.09.004
        • Kim Y.
        • Muruganandham M.
        • Modrick J.M.
        • Bayouth J.E.
        Evaluation of artifacts and distortions of titanium applicators on 3.0-Tesla MRI: feasibility of titanium applicators in MRI-guided brachytherapy for gynecological cancer.
        Int J Radiat Oncol Biol Phys. 2011; 80: 947-955https://doi.org/10.1016/j.ijrobp.2010.07.1981
        • van Heerden L.E.
        • Gurney-Champion O.J.
        • van Kesteren Z.
        • et al.
        Quantification of image distortions on the Utrecht interstitial CT/MR brachytherapy applicator at 3T MRI.
        Brachytherapy. 2016; 15: 118-126https://doi.org/10.1016/j.brachy.2015.10.008
        • van Heerden L.E.
        • van Kesteren Z.
        • Gurney-Champion O.J.
        • et al.
        Image distortions on a plastic interstitial computed tomography/magnetic resonance brachytherapy applicator at 3 Tesla magnetic resonance imaging and their dosimetric impact.
        Int J Radiat Oncol Biol Phys. 2017; 99: 710-718https://doi.org/10.1016/j.ijrobp.2017.06.016
        • de Arcos J.
        • Schmidt E.J.
        • Wang W.
        • et al.
        Prospective clinical implementation of a novel magnetic resonance tracking device for real-time brachytherapy catheter positioning.
        Int J Radiat Oncol Biol Phys. 2017; 99: 618-626https://doi.org/10.1016/j.ijrobp.2017.05.054
        • Viswanathan A.N.
        • Szymonifka J.
        • Tempany-Afdhal C.M.
        • et al.
        A prospective trial of real-time magnetic resonance-guided catheter placement in interstitial gynecologic brachytherapy.
        Brachytherapy. 2013; 12: 240-247https://doi.org/10.1016/j.brachy.2012.08.006
        • Wang W.
        • Viswanathan A.N.
        • Damato A.L.
        • et al.
        Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy.
        Med Phys. 2015; 42: 7114-7121https://doi.org/10.1118/1.4935535
        • Committee on MR Safety A.C.R.
        • Greenberg T.D.
        • Hoff M.N.
        • et al.
        ACR guidance document on MR safe practices: updates and critical information 2019.
        J Magn Reson Imaging. 2020; 51: 331-338https://doi.org/10.1002/jmri.26880
        • Anderson R.
        • Armour E.
        • Beeckler C.
        • et al.
        Interventional radiation oncology (IRO): transition of a magnetic resonance simulator to a brachytherapy suite.
        Brachytherapy. 2018; 17: 587-596https://doi.org/10.1016/j.brachy.2018.01.007
        • Sullivan T.
        • Yacoub J.H.
        • Harkenrider M.M.
        • et al.
        Providing MR imaging for cervical cancer brachytherapy: lessons for radiologists.
        Radiographics. 2018; 38: 932-944https://doi.org/10.1148/rg.2018170033
        • Manganaro L.
        • Lakhman Y.
        • Bharwani N.
        • et al.
        Staging, recurrence and follow-up of uterine cervical cancer using MRI: updated guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018.
        Eur Radiol. 2021; 31: 7802-7816https://doi.org/10.1007/s00330-020-07632-9
        • Pinto Dos Santos D.
        • Scheibl S.
        • Arnhold G.
        • et al.
        A proof of concept for epidemiological research using structured reporting with pulmonary embolism as a use case.
        Br J Radiol. 2018; 91https://doi.org/10.1259/bjr.20170564
        • Sabel B.O.
        • Plum J.L.
        • Kneidinger N.
        • et al.
        Structured reporting of CT examinations in acute pulmonary embolism.
        J Cardiovasc Comput Tomogr. 2017; 11: 188-195https://doi.org/10.1016/j.jcct.2017.02.008
        • Park S.B.
        • Kim M.J.
        • Ko Y.
        • et al.
        Structured reporting versus free-text reporting for appendiceal computed tomography in adolescents and young adults: preference survey of 594 referring physicians, surgeons, and radiologists from 20 hospitals.
        Korean J Radiol. 2019; 20: 246-255https://doi.org/10.3348/kjr.2018.0109
        • Kissel M.
        • Silva M.
        • Lequesne J.
        • et al.
        Impact of suboptimal tandem implantation on local control and complications in intracavitary brachytherapy for cervix cancer.
        Brachytherapy. 2019; 18: 753-762https://doi.org/10.1016/j.brachy.2019.08.004
        • Barnes E.A.
        • Thomas G.
        • Ackerman I.
        • et al.
        Prospective comparison of clinical and computed tomography assessment in detecting uterine perforation with intracavitary brachytherapy for carcinoma of the cervix.
        Int J Gynecol Cancer. 2007; 17: 821-826https://doi.org/10.1111/j.1525-1438.2007.00888.x
        • Onal C.
        • Guler O.C.
        • Dolek Y.
        • Erbay G.
        Uterine perforation during 3-dimensional image-guided brachytherapy in patients with cervical cancer: baskent University experience.
        Int J Gynecol Cancer. 2014; 24: 346-351https://doi.org/10.1097/igc.0000000000000048
        • Sapienza L.G.
        • Camargo R.C.
        • Migowski I.
        • et al.
        EP-1961: factors influencing the risk of uterus perforation in high-dose rate tridimensional brachytherapy.
        Radiother Oncol. 2016; 119: S930https://doi.org/10.1016/S0167-8140(16)33212-1
        • Narayan K.
        • van Dyk S.
        • Bernshaw D.
        • et al.
        Comparative study of LDR (Manchester System) and HDR image-guided conformal brachytherapy of cervical cancer: patterns of failure, late complications, and survival.
        Int J Radiat Oncol Biol Phys. 2009; 74: 1529-1535https://doi.org/10.1016/j.ijrobp.2008.10.085
        • Liu Z.-.S.
        • Guo J.
        • Lin X.
        • et al.
        Clinical feasibility of interstitial brachytherapy using a “hybrid” applicator combining uterine tandem and interstitial metal needles based on CT for locally advanced cervical cancer.
        Brachytherapy. 2016; 15: 562-569https://doi.org/10.1016/j.brachy.2016.06.004
        • Hallock A.
        • Surry K.
        • Batchelar D.
        • et al.
        An early report on outcomes from computed tomographic-based high-dose-rate brachytherapy for locally advanced cervix cancer: a single institution experience.
        Pract Radiat Oncol. 2011; 1: 173-181https://doi.org/10.1016/j.prro.2011.01.004
        • Thomas K.M.
        • Maquilan G.
        • Stojadinovic S.
        • et al.
        Reduced toxicity with equivalent outcomes using three-dimensional volumetric (3DV) image-based versus nonvolumetric point-based (NV) brachytherapy in a cervical cancer population.
        Brachytherapy. 2017; 16: 943-948https://doi.org/10.1016/j.brachy.2017.05.001
        • Chen S.W.
        • Liang J.A.
        • Hung Y.C.
        • et al.
        Effectiveness of image-guided brachytherapy in patients with locally advanced cervical squamous cell carcinoma receiving concurrent chemoradiotherapy.
        Anticancer Res. 2019; 39: 3015-3024https://doi.org/10.21873/anticanres.13434
        • Kobayashi D.
        • Okonogi N.
        • Wakatsuki M.
        • et al.
        Impact of CT-based brachytherapy in elderly patients with cervical cancer.
        Brachytherapy. 2019; 18: 771-779https://doi.org/10.1016/j.brachy.2019.08.002
        • Koh V.
        • Choo B.A.
        • Lee K.M.
        • et al.
        Feasibility study of toxicity outcomes using GEC-ESTRO contouring guidelines on CT based instead of MRI-based planning in locally advanced cervical cancer patients.
        Brachytherapy. 2017; 16: 126-132https://doi.org/10.1016/j.brachy.2016.09.009
        • Wang T.
        • Gao T.
        • Guo H.
        • et al.
        Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram.
        Eur Radiol. 2020; 30: 3585-3593https://doi.org/10.1007/s00330-019-06655-1
        • Kim M.
        • Suh D.H.
        • Kim K.
        • et al.
        Magnetic resonance imaging as a valuable tool for predicting parametrial invasion in stage IB1 to IIA2 cervical cancer.
        Int J Gynecol Cancer. 2017; 27: 332-338https://doi.org/10.1097/igc.0000000000000878