Advertisement

Inter-observer evaluation of a GPU-based multicriteria optimization algorithm combined with plan navigation tools for HDR brachytherapy

  • Cédric Bélanger
    Affiliations
    Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Québec, Canada

    Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Québec, Canada
    Search for articles by this author
  • Éric Poulin
    Affiliations
    Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Québec, Canada
    Search for articles by this author
  • Sylviane Aubin
    Affiliations
    Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Québec, Canada
    Search for articles by this author
  • Éric Vigneault
    Affiliations
    Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Québec, Canada
    Search for articles by this author
  • André-Guy Martin
    Affiliations
    Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Québec, Canada
    Search for articles by this author
  • William Foster
    Affiliations
    Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Québec, Canada
    Search for articles by this author
  • Luc Beaulieu
    Correspondence
    Corresponding author: Université Laval, Radiation Oncology, CHU of Quebec – Université Laval, 1401, 18e rue, Québec, Québec, G1J 1Z4, Canada. Tel: +418 525-4444.
    Affiliations
    Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Québec, Canada

    Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Québec, Canada
    Search for articles by this author

      Abstract

      PURPOSE

      Recently, a GPU-based multicriteria optimization (gMCO) algorithm was integrated in a graphical user interface (gMCO-GUI) that allowed real-time plan navigation through a set of Pareto-optimal plans for high-dose-rate (HDR) brachytherapy. This work reports on the inter-observer evaluation of the gMCO algorithm into the clinical workflow.

      METHODS AND MATERIALS

      Twenty HDR brachytherapy prostate cancer patients were retrospectively replanned with the gMCO algorithm. The reference clinical plans were each generated by experienced physicists using inverse planning followed by graphical optimization and approved by a radiation oncologist (RO). Each case was replanned with the gMCO algorithm by generating 2000 Pareto-optimal plans with four different objective functions. Two physicists were asked to rank the objective functions according to their preferences by choosing one preferred plan for each plans pool and ranking them using gMCO-GUI. The optimized dwell positions and dwell times of the gMCO plans that were ranked first were exported to Oncentra Prostate where a blinded comparison of the gMCO plans with the clinical plans was conducted by three ROs.

      RESULTS

      The median planning time of the two physicists was 9 min. Both physicists preferred the objective function with target sub-regions to cover specific target regions. Regarding the blinded comparison, the gMCO plans were preferred 19, 17, and 12 times by the three ROs, in which eight gMCO plans were unanimously preferred compared with the clinical plans.

      CONCLUSIONS

      The plan quality and the planning time were similar between the two physicists and within what is observed in the clinic. Moreover, the gMCO plans evaluated favorably by ROs compared to the reference clinical plans.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brachytherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • De Boeck L.
        • Beliën J.
        • Egyed W.
        Dose optimization in high-dose-rate brachytherapy: a literature review of quantitative models from 1990 to 2010.
        Oper Res Health Care. 2014; 3: 80-90https://doi.org/10.1016/j.orhc.2013.12.004
        • Cunha J.A.M.
        • Flynn R.
        • Bélanger C.
        • et al.
        Brachytherapy Future Directions.
        Semin Radiat Oncol. 2020; 30: 94-106https://doi.org/10.1016/j.semradonc.2019.09.001
        • Morén B.
        • Larsson T.
        • Tedgren Å.C.
        Optimization in treatment planning of high dose-rate brachytherapy — review and analysis of mathematical models.
        Med Phys. 2021; 48: 2057-2082https://doi.org/10.1002/mp.14762
        • Morton G.C.
        • Sankreacha R.
        • Halina P.
        • Loblaw A.
        A comparison of anatomy-based inverse planning with simulated annealing and graphical optimization for high-dose-rate prostate brachytherapy.
        Brachytherapy. 2008; 7: 12-16https://doi.org/10.1016/j.brachy.2007.10.001
        • Lessard E.
        • Pouliot J.
        Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function.
        Med Phys. 2001; 28: 773-779https://doi.org/10.1118/1.1368127
        • Karabis A.
        • Giannouli S.
        • Baltas D.
        40 HIPO: a hybrid inverse treatment planning optimization algorithm in HDR brachytherapy.
        Radiother Oncol. 2005; 76: S29https://doi.org/10.1016/S0167-8140(05)81018-7
      1. Karabis A., Belotti P., Baltas D. Optimization of catheter position and dwell time in prostate HDR brachytherapy using HIPO and linear programming. In: dössel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. IFMBE Proceedings. Springer Berlin Heidelberg; 2009. p. 612–615.

        • Cunha J.A.M.
        • Pouliot J.
        • Weinberg V.
        • et al.
        Urethra low-dose tunnels: validation of and class solution for generating urethra-sparing dose plans using inverse planning simulated annealing for prostate high-dose-rate brachytherapy.
        Brachytherapy. 2012; 11: 348-353https://doi.org/10.1016/j.brachy.2011.07.009
        • Cui S.
        • Després P.
        • Beaulieu L.
        A multi-criteria optimization approach for HDR prostate brachytherapy: I. Pareto surface approximation.
        Phys Med Biol. 2018; 63205004https://doi.org/10.1088/1361-6560/aae24c
        • Cui S.
        • Després P.
        • Beaulieu L.
        A multi-criteria optimization approach for HDR prostate brachytherapy: II. Benchmark against clinical plans.
        Phys Med Biol. 2018; 63205005https://doi.org/10.1088/1361-6560/aae24f
        • Luong N.H.
        • Alderliesten T.
        • Pieters B.R.
        • et al.
        Fast and insightful bi-objective optimization for prostate cancer treatment planning with high-dose-rate brachytherapy.
        Appl Soft Comput. 2019; 84105681https://doi.org/10.1016/j.asoc.2019.105681
        • Maree S.C.
        • Luong N.H.
        • Kooreman E.S.
        • et al.
        Evaluation of bi-objective treatment planning for high-dose-rate prostate brachytherapy—a retrospective observer study.
        Brachytherapy. 2019; 18: 396-403https://doi.org/10.1016/j.brachy.2018.12.010
        • Breedveld S.
        • Bennan A.B.A.
        • Aluwini S.
        • et al.
        Fast automated multi-criteria planning for HDR brachytherapy explored for prostate cancer.
        Phys Med Biol. 2019; https://doi.org/10.1088/1361-6560/ab44ff
        • Deufel C.L.
        • Epelman M.A.
        • Pasupathy K.S.
        • et al.
        PNaV: a tool for generating a high-dose-rate brachytherapy treatment plan by navigating the Pareto surface guided by the visualization of multidimensional trade-offs.
        Brachytherapy. 2020; (May)https://doi.org/10.1016/j.brachy.2020.02.013
        • Bélanger C.
        • Cui S.
        • Ma Y.
        • et al.
        A GPU-based multi-criteria optimization algorithm for HDR brachytherapy.
        Phys Med Biol. 2019; 64105005https://doi.org/10.1088/1361-6560/ab1817
        • Bouter A.
        • Alderliesten T.
        • Pieters B.R.
        • et al.
        GPU-accelerated bi-objective treatment planning for prostate high-dose-rate brachytherapy.
        Med Phys. 2019; 46: 3776-3787https://doi.org/10.1002/mp.13681
        • Bélanger C.
        • Poulin É.
        • Cui S.
        • et al.
        Evaluating the impact of real-time multicriteria optimizers integrated with interactive plan navigation tools for HDR brachytherapy.
        Brachytherapy. 2020; https://doi.org/10.1016/j.brachy.2020.06.016
        • Rivard M.J.
        • Coursey B.M.
        • DeWerd L.A.
        • et al.
        Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations.
        Med Phys. 2004; 31: 633-674https://doi.org/10.1118/1.1646040
        • Granero D.
        • Pérez-Calatayud J.
        • Casal E.
        • et al.
        A dosimetric study on the high dose rate Flexisource.
        Med Phys. 2006; 33: 4578-4582https://doi.org/10.1118/1.2388154
        • Radiation Therapy Oncology Group
        RTOG-0924 androgen deprivation therapy and high dose radiotherapy with or without whole-pelvic radiotherapy in unfavorable intermediate or favorable high risk prostate cancer: a phase iii randomized trial.
        NRG Oncology, Philadelphia, PA2016
        • Lacroix F.
        • Archambault L.
        • Lefebvre M.
        • Beaulieu L.
        The clinical efficiency and learning curve of ultrasound (us)-based planning in high dose rate (hdr) prostate brachytherapy.
        Brachytherapy. 2018; 17: S34-S35https://doi.org/10.1016/j.brachy.2018.04.047
        • Hsu I.-.C.J.
        • Lessard E.
        • Weinberg V.
        • Pouliot J.
        Comparison of inverse planning simulated annealing and geometrical optimization for prostate high-dose-rate brachytherapy.
        Brachytherapy. 2004; 3: 147-152https://doi.org/10.1016/j.brachy.2004.05.007