Advertisement

The American Brachytherapy society consensus statement for skin brachytherapy

      Abstract

      Purpose

      Keratinocyte carcinoma (KC, previously nonmelanoma skin cancer) represents the most common cancer worldwide. While surgical treatment is commonly utilized, various radiation therapy techniques are available including external beam and brachytherapy. As such, the American Brachytherapy Society has created an updated consensus statement regarding the use of brachytherapy in the treatment of KCs.

      Methods

      Physicians and physicists with expertise in skin cancer and brachytherapy created a consensus statement for appropriate patient selection, data, dosimetry, and utilization of skin brachytherapy and techniques based on a literature search and clinical experience.

      Results

      Guidelines for patient selection, evaluation, and dose/fractionation schedules to optimize outcomes for patients with KC undergoing brachytherapy are presented. Studies of electronic brachytherapy are emerging, although limited long-term data or comparative data are available. Radionuclide-based brachytherapy represents an appropriate option for patients with small KCs with multiple techniques available.

      Conclusions

      Skin brachytherapy represents a standard of care option for appropriately selected patients with KC. Radionuclide-based brachytherapy represents a well-established technique; however, the current recommendation is that electronic brachytherapy be used for KC on prospective clinical trial or registry because of a paucity of mature data.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Brachytherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rogers H.W.
        • Weinstock M.A.
        • Feldman S.R.
        • et al.
        Incidence estimate of nonmelanoma skin cancer (kerartinocyte carcinomas) in the U.S. population, 2012.
        JAMA Dermatol. 2015; 151: 1081-1086
      1. Cancer Facts and Figures 2019. American Cancer Society.
        (Available at:)
        • Guy Jr., G.P.
        • Machlin S.R.
        • Ekwueme D.U.
        • et al.
        Prevalence and cost of skin cancer treatment in the US, 2002-2006, and 2007-2011.
        Am J Prev Med. 2015; 48: 183-187
        • Tom M.C.
        • Hepel J.T.
        • Patel R.
        • et al.
        The American Brachytherapy Society consensus statement for electronic brachytherapy.
        Brachytherapy. 2019; 18: 292-298
        • Linos E.
        • VanBeek M.
        • Resneck Jr., J.S.
        A sudden and concerning increase in the use of electronic brachytherapy for skin cancer.
        JAMA Dermatol. 2015; 151: 699-700
        • Haffty B.G.
        • Beyer D.C.
        • Kavanagh B.D.
        Radiation oncologist concerns about increased electronic brachytherapy use for skin cancer.
        JAMA Dermatol. 2015; : 1036
        • Ouhib Z.
        • Kasper M.
        • Perez Calatayud J.
        • et al.
        Aspects of dosimetry and clinical practice of skin brachytherapy: the American Brachytherapy Society working group report.
        Brachytherapy. 2015; 14: 840-858
        • Manyam B.V.
        • Garsa A.A.
        • Chin R.I.
        • et al.
        A multi-institutional comparison of outcomes of immunosuppressed and immunocompetent patients treated with surgery and radiation therapy for cutaneous squamous cell carcinoma of the head and neck.
        Cancer. 2017; 123: 2054-2060
        • Brodland D.G.
        • Zitelli J.A.
        Surgical margins for excision of primary cutaneous squamous cell carcinoma.
        J Am Acad Dermatol. 1992; 27: 241-248
        • Wolf D.J.
        • Zitellia J.A.
        Surgical margins for basal cell carcinoma.
        Arch Dermatol. 1987; 123: 340-344
        • National Comprehensive Cancer Network
        Squamous cell skin cancer. Version 1.2020.
        (Available at)
        • National Comprehensive Cancer Network
        Basal Cell Skin Cancer. Version 1.2020.
        (Available at)
        • Skulsky S.L.
        • O’Sullivan B.
        • McArdle O.
        • et al.
        Review of high-risk features of cutaneous squamous cell carcinoma and discrepancies between the American Joint committee on cancer and NCCN clinical practice guidelines in oncology.
        Head Neck. 2017; 39: 578-594
        • Brantsch K.D.
        • Meisner C.
        • Schonfisch B.
        • et al.
        Analysis of factors determnining prognosis of cutaneous squamous-cell carcinoma: a prospective study.
        Lancet Oncol. 2018; 9: 713-720
        • Union for International Cancer Control
        Tnm.
        (Available at:)
        https://www.uicc.org/resources/tnm
        Date accessed: November 25, 2019
        • Lydiatt W.M.
        • Patel S.G.
        • O’Sullivan B.
        • et al.
        Head and neck cancer- major changes in the American Joint Committee on Cancer 8th edition cancer staging manual.
        CA Cancer J Clin. 2017; 67: 122-137
        • Likhacheva A.
        • Awan M.
        • Barker C.A.
        • et al.
        Definitive and postoperative radiation therapy for basal and squamous cell cancers of the skin: executive summary of an American Society for Radiation Oncology clinical practice guideline.
        Pract Radiat Oncol. 2019; 10: 8-20
        • Ma J.
        • Setton J.
        • Lee N.Y.
        • et al.
        The therapeutic significance of mutational signatures from DNA repair deficiency in cancer.
        Nat Commun. 2018; 9: 3292
        • Thomadsen B.C.R.
        • Briggs P.J.
        • DeWerd L.A.
        • et al.
        The 2007 AAPM response to the CRCPD request for recommendations for the CRCPD's model regulations for electronic brachytherapy.
        (Available at)
        • Devlin P.M.
        • Gaspar L.E.
        • Buzurovic I.
        • et al.
        American College of Radiology-American Brachytherapy Society practice parameter for electronically generated low-energy radiation sources.
        Brachytherapy. 2017; 16: 1083-1090
        • Pons-Llanas O.
        • Ballester-Sanchez R.
        • Celada-Alvarez F.J.
        • et al.
        Clinical implementation of a new electronic brachytherapy system for skin brachytherapy.
        J Contemp Brachytherapy. 2015; 6: 417-423
        • Garcia-Martinez T.
        • Chan J.P.
        • Perez-Calatayud J.
        • et al.
        Dosimetric characteristics of a new unit for electronic skin brachytherapy.
        J Contemp Brachytherapy. 2014; 6: 45-53
        • Guinot J.L.
        • Rembielak A.
        • Perez-Calatayud J.
        • et al.
        GEC-ESTRO ACROP recommendations in skin brachytherapy.
        Radiother Oncol. 2018; 126: 377-385
        • Beaulieu L.
        • Carlsson Tedgren A.
        • Carrier J.F.
        • et al.
        Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation.
        Med Phys. 2012; 39: 6208-6236
        • Rivard M.J.
        • Coursey B.M.
        • DeWerd L.A.
        • et al.
        Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations.
        Med Phys. 2004; 31: 633-674
        • Rivard M.J.
        • Davis S.D.
        • DeWerd L.A.
        • et al.
        Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.
        Med Phys. 2006; 33: 4020-4032
        • Brenner D.J.
        • Leu C.S.
        • Beatty J.F.
        • et al.
        Clinical relative biological effectiveness of low-energy x-rays emitted by miniature x-ray devices.
        Phys Med Biol. 1999; 44: 323-333
        • Chow J.C.
        • Owrangi A.M.
        Surface dose reduction from bone interface in kilovolatge x-ray radiation therapy: a Monte Carlo study of photon spectra.
        J Appl Clin Med Phys. 2012; 13: 3911
        • Kasper M.E.
        • Chaudhary A.A.
        Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy.
        Med Devices (Auckl). 2015; 8: 493-502
        • Landthaler M.
        • Braun-Falco O.
        Use of the TDF factor in soft roentgen radiotherapy.
        Hautarzt. 1989; 40: 774-777
        • Bhatnagar A.
        • Patel R.
        • Werschler W.P.
        • et al.
        High-dose rate electronic brachytherapy: a nonsurgical treatment alternative for nonmelanoma skin cancer.
        J Clin Aesthet Dermatol. 2016; 9: 16-22
        • Bhatnagar A.
        • Loper A.
        The initial experience of electronic brachytherapy for the treatment of non-melanoma skin cancer.
        Radiat Oncol. 2010; 5: 87
        • Bhatnagar A.
        Nonmelanoma skin cancer treated with electronic brachytherapy: results at 1 year.
        Brachytherapy. 2013; 12: 134-140
        • Paravati A.J.
        • Hawkins P.G.
        • Martin A.N.
        • et al.
        Clinical and cosmetic outcomes in patients treated with high-dose-rate electronic brachytherapy for nonmelanoma skin cancer.
        Pract Radiat Oncol. 2015; 5: e659-e664
        • Ballester-Sanchez R.
        • Pons-Llanas O.
        • Candela-Juan C.
        • et al.
        Electronic brachytherapy for superficial and nodular basal cell carcinoma: a report of two prospective pilot trials using different doses.
        J Contemp Brachytherapy. 2016; 8: 48-55
        • Ballester-Sanchez R.
        • Pons-Llanas O.
        • Candela-Juan C.
        • et al.
        Two years results of electronic brachytherapy for basal cell carcinoma.
        J Contemp Brachytherapy. 2017; 9: 251-255
        • Ballester-Sanchez R.
        • Pons-Llanas O.
        • Candela-Juan C.
        • et al.
        Efficacy and safety of electronic brachytherapy for superficial and nodular basal cell carcinoma.
        J Contemp Brachytherapy. 2015; 7: 231-238
        • Doggett S.
        • Willoughby M.
        • Willoughby C.
        • et al.
        Incorporation of electronic brachytherapy for skin cancer into a community dermatology practice.
        J Clin Aesthet Dermatol. 2015; 8: 28-32
        • Patel R.
        • Strimling R.
        • Doggett S.
        • et al.
        Comparison of electronic brachytherapy and Mohs micrographic surgery for the treatment of early-stage non-melanoma skin cancer: a matched pair cohort study.
        J Contemp Brachytherapy. 2017; 9: 338-344
        • Hamilton J.R.
        • Parvataneni R.
        • Stuart S.E.
        • et al.
        Recurrence 5 years after treatment of recurrent cutaneous basal cell and squamous cell carcinoma.
        JAMA Dermatol. 2013; 149: 616-618
        • Caresana G.
        • Giardini R.
        Dermoscopy-guided surgery in basal cell carcinoma.
        J Eur Acad Dermatol Venereol. 2010; 24: 1395-1399
        • Ballester-Sanchez R.
        • Pons-Llanas O.
        • Llavador-Ros M.
        • et al.
        Depth determination of skin cancers treated with superficial brachytherapy: ultrasound vs. Histopathology.
        J Contemp Brachytherapy. 2015; 6: 356-361
        • Goyal U.
        • Pan J.
        • Cui H.
        • et al.
        Does ultrasound measurement improve the accuracy of electronic brachytherapy in the treatment of superficial non-melanomatous skin cancer?.
        J Contemp Brachytherapy. 2017; 9: 14-19
        • Goyal U.
        • Kim Y.
        • Tiwari H.A.
        • et al.
        A pilot study of ultrasound-guided electronic brachytherapy for skin cancer.
        J Contemp Brachytherapy. 2015; 7: 374-380
        • Fulkerson R.K.
        • Micka J.A.
        • DeWerd L.A.
        Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source.
        Med Phys. 2014; 41: 022103
        • Candela-Juan C.
        • Niatsetski Y.
        • Ouhib Z.
        • et al.
        Commission and periodic tests of the Esteya electronic brachytherapy system.
        J Contemp Brachytherapy. 2015; 7: 189-195
        • Ma C.M.
        • Coffey C.W.
        • DeWerd L.A.
        • et al.
        AAPM protocol for 40e300 kV x-ray beam dosimetry in radiotherapy and radiobiology.
        Med Phys. 2001; 28: 868-893
        • Kutcher G.J.
        • Coia L.
        • Guillin M.
        • et al.
        Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee Task group 40.
        Med Phys. 1994; 21: 581-618
        • Nath R.
        • Anderson L.L.
        • Meli J.A.
        • et al.
        Code of practice for brachytherapy physics: report of the AAPM radiation therapy committee Task group No. 56.
        Med Phys. 1997; 24: 1557-1598
        • Rodriguez S.
        • Arenas M.
        • Guiterrez C.
        • et al.
        Recommendations of the Spanish brachytherapy group (GEC) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy.
        Clin Transl Oncol. 2018; 20: 431-442
        • Fulkerson R.K.
        • Micka J.A.
        • DeWerd L.A.
        Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate 192Ir sources. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II.
        Med Phys. 2014; 41: 022104
        • Perez-Calatayud J.
        • Granero D.
        • Ballester F.
        • et al.
        A dosimetric study of Leipzig applicators.
        Int J Radiat Oncol Biol Phys. 2005; 62: 579-584
        • Granero D.
        • Perez-Calatayud J.
        • Gimeno J.
        • et al.
        Design and evaluation of a HDR skin applicator with flattening filter.
        Med Phys. 2008; 35: 495-503
        • Granero D.
        • Candela-Juan C.
        • Ballester F.
        • et al.
        Commissioning and quality assurance procedures for the HDR Valencia skin applicators.
        J Contemp Brachytherapy. 2016; 8: 441-447
        • Granero D.
        • Candela-Juan C.
        • Vijande J.
        • et al.
        Technical note: dosimetry of Leipzig and Valencia applicators without the plastic cap.
        Med Phys. 2016; 43: 2087
        • Olek Jr., D.
        • El-Ghamry M.N.
        • Deb N.
        • et al.
        Custom mold applicator high-dose-rate brachytherapy for nonmelanoma skin cancer. An analysis of 273 lesions.
        Brachytherapy. 2018; 17: 601-608
        • Jumeau R.
        • Renard-Oldrini S.
        • Courrech F.
        • et al.
        High dose rate brachytherapy with customized applicators for malignant facial skin lesion.
        Cancer Radiother. 2016; 20: 341-346
        • Ashby M.A.
        • Pacella J.A.
        • DeGroot R.
        • et al.
        Use of radon mold technique for skin cancer: results for the Peter MacCallum Cancer Institute (1975-1984).
        Br J Radiol. 1989; 62: 608-612
        • Skowronek J.
        Brachytherapy in the treatment of skin cancer: an overview.
        Postepy Dermatol Alergol. 2015; 32: 362-367
        • American Association of Physicists in Medicine
        Task Group No. 253- surface brachytherapy.
        (Available at)
        • Kalaghchi B.
        • Esmati E.
        • Ghalehtaki R.
        • et al.
        High-dose-rate brachytherapy in treatment of non-melanoma skin cancer of head and neck region: preliminary results of a prospective single institution study.
        J Contemp Brachytherapy. 2018; 10: 115-122
        • Arenas M.
        • Arguís M.
        • Díez-Presa L.
        • et al.
        Hypofractionated high-dose-rate plesiotherapy in nonmelanoma skin cancer treatment.
        Brachytherapy. 2015; 14: 859-865
        • Casey S.
        • Bahl G.
        • Awotwi-Pratt J.B.
        High dose rate 192-Ir-Brachytherapy for basal cell carcinoma of the skin using a 3D printed surface mold.
        Cureus. 2019; 11: e4913
        • Daly N.J.
        • De Lafontan B.
        • Combes P.F.
        Results of the treatment of 165 lid carcinomas by Iridium wire implant.
        Int J Radiat Oncol Biol Phys. 1984; 10: 455-459
        • Pierquin B.
        • Wilson J.F.
        • Chassagne D.
        • et al.
        Skin.
        in: Pierquin B. Wilson J.F. Chassagne D. Modem brachytherapy. Masson, New York1987: 273-285
        • Mazeron J.J.
        • Chassagne D.
        • Crook J.
        • et al.
        1989 Radiation therapy of carcinomas of the skin of nose and nasal vestibule, a report of 1676 cases by the Groupe Europeen de Curietherapie.
        Radiother Oncol. 1989; 13: 165-173
        • Crook J.M.
        • Mazeron J.J.
        • Marinello G.
        • et al.
        Interstitial iridium 192 for cutaneous carcinoma of external nose.
        Int J Radiat Oncol Biol Phys. 1990; 18: 243-248
        • Lliso F.
        • Granero D.
        • Perez-Calatayud J.
        • et al.
        Dosimetric evaluation of internal shielding in a high dose rate skin applicator.
        J Contemp Brachytherapy. 2011; 3: 32-35
        • Likhacheva A.O.
        • Devlin P.M.
        • Shirvani S.M.
        • et al.
        Skin surface brachytherapy: a survey of contemporary practice patterns.
        Brachytherapy. 2017; 16: 223-229
        • Zaorsky N.
        • Lee C.T.
        • Zhang E.
        • et al.
        Hypofractionated radiation therapy for basal and squamous cell skin cancer: a meta-analysis.
        Radiother Oncol. 2017; 125: 13-20
        • Nag S.
        • Caro E.R.
        • Demanes J.D.
        • et al.
        The American Brachytherapy Society recommendations for high dose rate brachytherapy for head and neck carcinoma.
        Int J Oncol Biol Phys. 2001; 50: 1190-1198
        • Veness M.J.
        • Elishaj D.
        • Barnes E.A.
        • et al.
        Current role of radiotherapy in non-melanoma skin cancer.
        Clin Oncol (R Coll Radiol). 2019; 31: 749-758
        • Gauden R.
        • Pracy M.
        • Avery A.M.
        • et al.
        HDR brachytherapy for superficial non-melanoma skin cancers.
        J Med Imaging Radiat Oncol. 2013; 57: 212-217
        • Arguis M.
        • Murcia-Mejía M.
        • Henríquez I.
        • et al.
        The role of HDR brachytherapy in non-melanoma skin cancer treatment.
        Radiother Oncol. 2012; 103: S477
        • Ashby M.A.
        • Pacella J.A.
        • De Groot R.
        • et al.
        Use of radon mould technique for skin cancer: results from the Peter MacCallum Cancer Institute.
        Br J Radiol. 1989; 62: 608-612
        • Svoboda V.H.J.
        • Kovarik J.
        • Morris F.
        High dose rate microselectron molds in the treatment of skin tumors.
        Int J Radiat Oncol Biol Phys. 1995; 31: 967-972
        • Tormo A.
        • Celada F.
        • Rodriguez S.
        • et al.
        Non-melanoma skin cancer treated with HDR Valencia applicator: clinical outcomes.
        J Contemp Brachytherapy. 2014; 6: 167-172
        • Guix B.
        • Finestres F.
        • Tello J.
        • et al.
        Treatment of skin carcinomas of the face by high dose rate brachytherapy and custom made surface molds.
        Int J Radiat Oncol Biol Phys. 2000; 47: 95-102
        • Kanikowski M.
        HDR brachytherapy of skin cancer in material of Greater Poland Cancer Center.
        J Contemp Brachytherapy. 2009; 1: S197
        • Gambaro G.
        • Negri E.
        Interstitial brachytherapy with iridium- 192 for carcinomas of the eyelid and inner canthus.
        Radiother Oncol. 2001; 60: 16
        • Maes A.
        • Van Limbergen E.
        Ldr – brachytherapy (BT) for non-melanoma skin cancer of the face: local control rate, functional and cosmetic outcome in 173 patients.
        Radiother Oncol. 2001; 60: 16
        • Mazeron J.J.
        • Ghalie R.
        • Zeller J.
        • et al.
        Radiation therapy for carcinoma of the pinna using iridium 192 wires: a series of 70 patients.
        Int J Radiat Oncol Biol Phys. 1986; 12: 1757-1763
        • Montero A.
        • Hernan R.
        • Capuz A.
        • et al.
        High-dose-rate (HDR) plesiotherapy with custom-made mold for the treatment of nonmelanoma skin cancer.
        Clin Transl Oncol. 2009; 11: 760-764
        • Maronas M.
        • Guinot J.L.
        • Arribas L.
        • et al.
        Treatment of facial cutaneous carcinoma with high dose rate contact brachytherapy with customized mold.
        Brachytherapy. 2011; 10: 221-227
        • Ghaly M.
        • Birnes R.
        • Musmacher J.
        • et al.
        HDR brachytherapy with standardized surface applicators (the Leipzig applicator) as an alternative, radiotherapy treatment for superficial malignant skin lesions.
        Int J Radiat Oncol Biol Phys. 2006; 66: S719-S720
        • Musmacher J.
        • Byrnes R.T.
        • Satchwill K.
        • et al.
        High dose rate (HDR) brachytherapy with surface applicators-treatment for nonmelanoma skin cancer. Abstracts.
        Brachytherapy. 2006; 5: 105
        • Ghaly M.
        • Byrnes R.
        • Zinkin H.
        • et al.
        Role of HDR brachytherapy with standardized surface applicators in the treatment of superficial malignant skin lesions.
        Brachytherapy. 2008; 7: 159-160
        • Chan A.
        • D’Souza O.
        • Vujovic G.
        • et al.
        High dose rate (HDR) brachytherapy treatment for skin cancer: a novel approach.
        Int J Radiat Oncol Biol Phys. 2003; 57: S450
        • Marek K.
        HDR brachytherapy of skin cancer in material of greater Poland Cancer Center.
        J Contemp Brachytherapy. 2009; 1
        • Rodriguez S.
        • Santos M.
        • Carballo N.
        • et al.
        High dose rate brachytherapy in skin cancers: local control and cosmetical results.
        Radiother Oncol. 2003; 66: S39
        • Martinez-Monge R.
        • Gomez-Iturriaga A.
        High dose rate brachytherapy in lower eyelid cancer.
        Brachytherapy. 2007; 6: 227-229
        • Bacorro W.
        • Escande A.
        • Temam S.
        • et al.
        Clinical outcomes after interstitial brachytherapy for early-stage nasal squamous cell carcinoma.
        Brachytherapy. 2017; 16: 1021-1027
        • Debois J.M.
        Cesium-137 brachytherapy for epithelioma of the skin of the nose: experience with 370 patients.
        JBR-BTR. 1994; 77: 1-4
        • Frakulli R.
        • Galuppi A.
        • Cammelli S.
        • et al.
        Brachytherapy in non melanoma skin cancer of eyelid: a systematic review.
        J Contemp Brachytherapy. 2015; 7: 497-502
        • Delishaj D.
        • Rembelak A.
        • Manfredi B.
        • et al.
        Non-melanoma skin cancer treated with high-dose-rate brachytherapy: a review of literature.
        J Contemp Brachytherapy. 2016; 8: 533-540
        • Allan E.
        • Stanton A.
        • Pye D.
        • et al.
        Fractionated high dose rate brachytherapy mold: a precise treatment for carcinoma of the pinna.
        Radiother Oncol. 1998; 48: 277-281
        • Amendola B.
        • Amendola M.A.
        • Fowler J.
        Dermatological applications of HDR using surface applicators using a shorter treatment schedule.
        Brachytherapy. 2006; 5: 105
        • Somanchi B.
        • Stanton A.
        • Webb M.
        • et al.
        Hand function after high dose rate brachytherapy for squamous cell carcinoma of the skin of the hand.
        Clin Oncol (R Coll Radiol). 2008; 20: 691-697
        • Fabrini M.G.
        • Perrone F.
        • De Liguoro M.
        • et al.
        High dose rate brachytherapy in a large squamous cell carcinoma of the hand.
        Brachytherapy. 2008; 7: 270-275
        • Ozyar E.
        • Gurdalli S.
        Mold brachytherapy can be an optional technique for total scalp irradiation.
        Int J Radiat Oncol Biol Phys. 2002; 54: 1286
        • Azad S.
        • Chouhary V.
        Treatment results of high dose rate interstitial brachytherapy in carcinoma of eyelid.
        J Cancer Res Ther. 2011; 7: 157-161
        • Delishaj D.
        • Laliscia C.
        • Manfredi B.
        • et al.
        Non-melanoma skin cancer treated with high-dose-rate brachytherapy and Valencia applicator in elderly patients: a retrospective case series.
        J Contemp Brachytherapy. 2015; 7: 437-444
        • Avril M.F.
        • Auperin A.
        • Marguilis A.
        • et al.
        Basal cell carcinoma of the face: surgery or radiotherapy? Results of a randomized study.
        Br J Cancer. 1997; 76: 100-106
        • Zaorsky N.G.
        • Lee C.T.
        • Zhang E.
        • et al.
        Skin CanceR brachytherapy vs External beam radiation therapy (SCRIBE) meta-analysis.
        Radiother Oncol. 2018; 126: 386-393
        • Lee C.T.
        • Lehrer E.J.
        • Aphale A.
        • et al.
        Surgical excision, Mohs micrographic surgery, external-beam radiotherapy, or brachytherapy for indolent skin cancer: an international meta-analysis of 58 studies with 21,000 patients.
        Cancer. 2019; 125: 2582-2594
        • Rodriguez-Villalba S.
        • Perez-Calatayud M.J.
        • Bautista J.A.
        • et al.
        Novel simple templates for reproducible positioning of skin applicators in brachytherapy.
        J Contemp Brachytherapy. 2016; 8: 1-5